Constants of Nature, typical units of measure, and physical & astronomical formulae (14 Aug. 2019):

Some constants of Nature:

$G = 6.67 \text{ x } 10^{-8} \text{ c}$	Newton's gravitational constant	Units:	$[\text{cm}^3 \text{ s}^{-2} \text{ g}^{-1}]$
$c = 2.998 \times 10^{10}$	Speed of light in vacuum		$[cm s^{-1}]$
$h = 6.626 \times 10^{-27}$	Planck's constant		$[cm^2 s^{-1} g]$
$e = 4.8 \times 10^{-10}$	Electric charge of an electron or proton	$[g^{1/2} cn]$	$n^{3/2} s^{-1}$] = [electrostatic units]
$k = 1.38 \times 10^{-16}$	Boltzman's constant		$[erg K^{-1}] = [g cm^2 s^{-2} K^{-1}]$
$\sigma = 5.67 \text{ x } 10^{-5}$	Stefan-Boltzmann constant		$[erg s^{-1} cm^{-2} K^{-4}]$
$H = 71 \text{ km s}^{-1} \text{ Mpc}^{-1}$	Hubble "constant" $[s^{-1}] \sim 2.3 \times 10^{-18} s^{-1}$	~ 1 /[A	ge of Universe] = $1/13.7 \times 10^9$ yrs]
$\sigma_{\rm T} = 6.652 \text{ x} 10^{-25} \text{ cm}^2$	Thompson cross-section of the electron		

Some units of time:

1 year ~ $[365.25][24][60][60] \sim 3.15 \times 10^7$ seconds Age of the Universe: $t_U \sim 13.7 \times 10^9$ years Planck time $\tau_P = (hG/2\pi c^5)^{0.5} \sim 5.4 \times 10^{-44}$ seconds ~ time to cross Planck length at the speed of light

Some units of length:

1 A.U. = "Astronomical Unit" = 1.49597871 x 10^{13} cm ~ 1.5 x 10^{13} cm: Mean Earth–Sun separation. 1 pc = 1 "parsec" = 3.086 x 10^{18} cm (*Distance from which 1 A.U. subtends 1*") 1 kpc = 10^3 pc = 3.086 x 10^{21} cm: 1 Mpc = 10^6 pc = 3.086 x 10^{24} cm 1 µm (micro-meter) = 10^{-6} m = 10^{-4} cm ~ 2x wavelength of visual light 1 nm (nano-meter) = 10^{-9} m = 10^{-7} cm ~ size of molecules 1 Angstrom = 1 A = 10^{-8} cm ~ size of atoms 1 Fermi = 10^{-13} cm ~ size of atomic nuclei R_o = 6.956 x 10^{10} cm ~ radius of the Sun

Horizon radius of the Universe today: $R_U \sim 1.3 \times 10^{28} \text{ cm} \sim size \text{ of cosmic horizon } (R_U \sim Ct_{Universe})$ Planck length = $\lambda_P = (hG/2\pi c^3)^{0.5} \sim 1.6 \times 10^{-33} \text{ cm} \sim wavelength of photon which would collapse into its own black hole. Scale of the "Big Bang", of "String Theory", and black hole singularities.$

Some measures of Angle:

A circle contains $360^\circ = 2 \pi$ [radians] (rad)Radian:1 radian = $360 / 2 \pi$ [degrees] ~ 57.3° Arc-minute:1' = 1/60 of a degree;Arc-second:1" = 1/60 of an arc-minute = 1/3600 of a degree ~ 1 / 206265 or a radianThus1 radian contains ~ 206,265 arc-seconds ~ 57.3×3600 arc-seconds

Some units of energy:

 $1 \text{ Watt} = 10^7 \text{ ergs s}^{-1}$ $1 \text{ electron Volt} = 1 \text{ eV} = 1.602 \text{ x } 10^{-12} \text{ [erg]} \qquad \text{Units of energy: [erg]} = [\text{g cm}^2 \text{ s}^{-2}]$ Kinetic energy of a particle $\mathbf{E} = \frac{1}{2} \text{ m V}^2$ Energy of a photon $\mathbf{E} = \mathbf{hv} \quad \mathbf{v} = \text{frequency in Hz}$ Energy – mass relation $\mathbf{E} = \gamma \mathbf{m}_0 \mathbf{c}^2 \quad \mathbf{m}_0 = \text{rest mass} => \mathbf{m} = \mathbf{E} / \mathbf{c}^2$ Thermal energy $\mathbf{E} = \mathbf{kT} \quad \mathbf{T} = \text{temperature in Kelvin (degrees above absolute 0, -273K)}$ $1 \text{ megaton explosion } \mathbf{E}_{mt} = 4.184 \text{ x } 10^{22} \text{ [erg]} : \qquad \text{A typical supernova} \qquad \mathbf{E}_{SN} \sim 10^{51} \text{ ergs}$

Some units of mass and luminosity:

Planck mass : $\mathbf{m}_{P} = (\mathbf{hc}/2\pi \mathbf{G})^{0.5} \sim 2.2 \times 10^{-5}$ grams ~ mass-energy of an EM wave with $\lambda = Planck \ length$ Mass of a proton: $\mathbf{m}_{H} = \mathbf{m}_{p} = \mathbf{1.67} \times \mathbf{10^{-24}}$ grams ; Mass of an electron $\mathbf{m}_{e} = \mathbf{0.9} \times \mathbf{10^{-27}}$ grams Mass of the Sun: $\mathbf{M}_{o} = \mathbf{1.989} \times \mathbf{10^{33}}$ grams ; Luminosity of the Sun $\mathbf{L}_{o} = \mathbf{3.839} \times \mathbf{10^{33}}$ (erg s⁻¹) Earth: $M_E = 5.9736 \text{ x } 10^{27} \text{ grams}, R_E = 6.378 \text{ x } 10^8 \text{ cm}$

Jupiter: $M_J = 1.8986 \text{ x } 10^{30} \text{ grams} (\sim 10^{-3} \text{ M}_0), R_J \sim 7 \text{ x } 10^9 \text{ cm} = 7 \text{ x } 10^4 \text{ km}$

Luminosity: $\mathbf{L} = 4 \pi \mathbf{R}^2 \sigma \mathbf{T}^4$ (erg s⁻¹) where **T** is in Kelvin, **R** is the radius of the radiating surface. Flux $\mathbf{F} = \mathbf{L} / (4 \pi \mathbf{D}^2)$ (erg s⁻¹ cm⁻²) **D** is distance from the source to where the flux is measured.

Some measures of Geometry:

Circumference of a circle $C = 2 \pi r$ where r is the radius of the circle Area of a circle, $A = \pi r^2$: Area of a sphere, $A = 4 \pi r^2$: Volume of a sphere, $A = (4/3) \pi r^3$

Velocity and acceleration:

Velocity $\mathbf{V} = [\text{change in position}] / [\text{time interval}] = \Delta \mathbf{x} / \Delta \mathbf{t}$ Acceleration $\mathbf{a} = [\text{change in velocity}] / [\text{time interval}] = \Delta \mathbf{V} / \Delta \mathbf{t} = \Delta \mathbf{x} / \Delta \mathbf{t}^2$

 $[g \text{ cm s}^{-2}]$ *Forces:* Force on particle of mass m $\mathbf{F} = \mathbf{ma}$ $\mathbf{a} = acceleration$ $\mathbf{F} = -\mathbf{G} \mathbf{m} \mathbf{M} / \mathbf{r}^2$ Gravitational force between masses m and M separated by distance r Electrostatic force $\mathbf{F}_{\mathrm{E}} = \mathbf{e}_1 \, \mathbf{e}_2 \, / \, \mathbf{r}^2$ between charges e_1 and e_2 separated by distance r $\mathbf{F}_{\mathbf{B}} = \mathbf{e}_{1}\mathbf{V}\mathbf{x}\mathbf{B} / \mathbf{c}$ $\mathbf{F}_{\mathbf{E}\mathbf{M}} = \mathbf{F}_{\mathbf{E}} + \mathbf{F}_{\mathbf{B}}$ V = velocitvMagnetic force short range (10⁻¹³ cm) binds quarks into neutrons & protons Strong Nuclear Force short range (10^{-15} cm) responsible for radioactivity and quark decays Weak Nuclear Force Centrifugal (centripedal) force $\mathbf{F}_{c} = \mathbf{mV}^{2} / \mathbf{R}$; $\mathbf{V} = \text{orbit speed}, \mathbf{R} = \text{orbit radius}$

Power radiated by a charge **q**, experiencing acceleration **a**: $\mathbf{P} = 2\mathbf{q}^2\mathbf{a}^2/3\mathbf{c}^3$ (erg s⁻¹) (Larmor)

Gravity & Orbits:

Circular orbit speed Escape speed Gravitational potential energy per gram, $E_G = GM / r$; $V_{orbit} = (G M / r)^{1/2}$ $V_{escape} = (2 G M / r)^{1/2} = 2^{1/2} V_{orbit} \sim 1.414 V_{orbit}$ Self energy $E_G \sim GM^2 / r$ Gravitational collapse time of a cloud with mean density ρ : $\tau_{coll} \sim 1/(G \rho)^{0.5}$ [sec] Accretion rate from a collapsing isothermal sphere [$\rho(r) = \rho_0 r^{-2}$]: $dM/dt \sim c_s^3/G$ [g s⁻¹] Speed of Sound: $c_s = (kT / \mu m_H)^{1/2}$ Accretion luminosity produced by accretion rate dM/dt onto an object of mass M, radius r: $L \sim GM(dM/dt) / r$ [erg s⁻¹]; Kelvin-Helmholtz time scale: $\tau_{KH} \sim GM^2 / RL$ [sec] Virial Theorem: 2 < [Kinetic Energy] > = - < [time averaged potential energy] > ; [mV²] = [U]Elliptical orbits & binaries: Ellipse with semi-major & semi-minor axes **a**, **b**, eccentricity **e**, $b^2 = a^2 (1 - e^2); P^2 = a^3; L = \mu Vx r$ Radial distance from the foci, \mathbf{r}, \mathbf{r}' : $2\mathbf{a} = \mathbf{r} + \mathbf{r}'$; Reduced mass: $\mu = m_1 m_2 / (m_1 + m_2)$ $e = \Delta x / 2a$ where $\Delta x =$ separation between foci. $\mathbf{r} = \mathbf{a}(1 - \mathbf{e}^2) / [1 + \mathbf{e} \cos(\theta)] = (\mathbf{L}^2 / \mu^2) / [\mathbf{GM}(1 + \mathbf{e} \cos(\theta))] \quad ; \quad \mathbf{L} = \mu [\mathbf{GMa}(1 - \mathbf{e}^2)]^{0.5}$ (Kepler I) A = Area swept-out; $dA/dt = L / 2\mu$; $V_{orbit}^2 = G (m_1 + m_2) [(2/r) - (1/a)]$ (Kepler II) Orbit Period: $P^2 = 4 \pi^2 a^3 / [G (m_1 + m_2)]$; Orbit energy: $\mathbf{E} = -\mathbf{Gm}_1\mathbf{m}_2/2\mathbf{a}$ (Kepler III) Wavelengths of light & matter particles:

Speed of light $\mathbf{c} = \mathbf{v} \lambda$ $\lambda = wavelength; f = frequency$

Wavelength of light $\lambda = c / v$

Wavelength of a particle $\lambda = h / mV = h / p$ (de Broglie wavelength): V = particle velocity,

 $\mathbf{p} = \mathbf{m}\mathbf{V} = momentum \text{ of a particle mass } m; \quad \mathbf{p} = \mathbf{E}/\mathbf{c} = \mathbf{h}\mathbf{v} / \mathbf{c} = \mathbf{h} / \lambda = momentum \text{ of light } Telescopes and resolution: Angular resolution of a telescope:$

 $\theta = 1.22 \lambda / D$ [radians]: $D = mirror or lens diameter; \lambda = wavelength$

Magnification: $M = FL / f_e = D(entrance-pupil) / D(exit-pupil) = Angle(out) / Angle(in)$

 f_e = focal length of the eyepiece; FL = effective focal length of the main mirror or lens Effective aperture: $A_{eff} = \eta \pi (D/2)^2$ where η = `throughput efficiency' ~ 0.1 to 0.8 typically.

Magnitudes & Flux:

Apparent Magnitude: $\mathbf{m} = -2.5 \log_{10} [Flux(\lambda) / Flux_{Vega}(\lambda)]$ (Vega scale) Absolute magnitude: What the *Apparent magnitude* would be at D = 10 pc. $M_V(Sun) = 4.74$ 1 Jansky = 1 Jy = 10^{-26} W m⁻² Hz⁻¹ = 10^{-23} erg s⁻¹ cm⁻² Hz⁻¹

Flux of Vega (m = 0 mag.): 3781 Jy at λ = 0.55 μ m (visual Cousins-Johnson V-filter) For conversions of m to Jy in other filters, see ...

http://ssc.spitzer.caltech.edu/warmmission/propkit/pet/magtojy/

Non-relativistic Doppler Effect: $\Delta\lambda/\lambda = \Delta f/f = \Delta V / c = z$ (= redshift if ΔV is positive) where

 $\Delta \lambda = \lambda \text{ observed} - \lambda \text{ emitted }; \quad \Delta f = f \text{ observed} - f \text{ emitted }; \quad \Delta V = V_{\text{observed}} - V_{\text{rest}}$ Redshift or Blueshift: $z = \Delta \lambda / \lambda = [\lambda_{\text{observed}} - \lambda_{\text{emitted}}] / \lambda_{\text{emitted}} = [f_{\text{emitted}} - f_{\text{observed}}] / f_{\text{observed}} = \Delta f / f$ Relativistic Doppler Effect: $V = c [(\{1+z\}^2 - 1) / (\{1+z\}^2 + 1)]$ where $z = \Delta \lambda / \lambda = \text{redshift}$ Lorrentz transformations:

 $\begin{array}{ll} x'=\gamma \; (x-Vt) \; ; \quad v'=y'; \quad x'=z, \quad t'=\gamma (t-Vx/c^2) \quad \text{with} \quad \beta=v/c \quad \& \quad \gamma=(1-\beta^2)^{-1/2} \\ \text{Time-dilation:} \quad \Delta t_{\text{moving}}=\; (1-\beta^2)^{-1/2} \; \Delta t_{\text{rest}} \quad \text{Space-contraction:} \quad L_{\text{moving}}=\; L_{\text{rest}} \; (1-\beta^2)^{1/2} \\ \end{array}$

Black Holes, Cosmology, Heisenberg uncertainty:

$R_s = 2 GM / c^2$	- Radius of a black hole of mass M
$\mathbf{V} = \mathbf{H} \mathbf{D}$	- Hubble's Law; (D in Mpc, V in km/s)
$H \sim 71 \text{ km s}^{-1} / \text{Mpc}$	- H is the "Hubble constant"
$\Delta p = h / \Delta x$ $\Delta E =$	h / Δt - Heisenberg uncertainty principle.

Fundamental particles ("fermions"):

"Can't put two or more in the same place – like cars!"

Quarks:	· Up	(u charge = $+2/3$ e);	<i>Down</i> (d charge = $-1/3$ e)	:Stable in protons & neutrons		
	Charmed	(c charge = $+2/3$ e);	Strange (s charge = $-1/3$ e)	:Unstable (via Weak force)		
	Тор	(t charge = $+2/3$ e);	Bottom (b charge = $-1/3$ e)	:Very unstable (via Weak force)		
Leptons:	Electron	$\mathbf{e}_{-}(\mathbf{e}_{-});$	<i>e-neutrino</i> ($\mathbf{v}_{\mathbf{e}}$ charge = 0)	: e -stable; $\mathbf{v}_{e} \mathbf{v}_{m} \mathbf{v}_{t}$ -oscillate		
	Muon	(μ charge = +2/3 e);	μ -neutrino ($\nu_{\rm m}$ charge =0)	:Unstable (via Weak force)		
	Таи	$(\tau \text{ charge} = +2/3 \text{ e});$	τ -neutrino (v_t charge =0)	:Very unstable (via Weak force)		
All above have anti-matter counterparts with opposite charge (12 fundamental particles known)						

Force carriers ("bosons"):"Two or more love to be in the same place – like photons in lasers!" $\underline{Photons}$ (electro-magnetic force) W^+ , W_- , Z_0 (weak nuclear force)8 Gluons (strong nuclear force) $\underline{Gravitons}$ (gravitational force)Higgs particle: (makes particles such as $W^{+/-}$ and Z_0 massive)

Neutrons are made of 3 quarks: $[u^{2/3}, d^{1/3}, d^{1/3}]$; Protons are made of 3 quarks: $[u^{2/3}, u^{2/3}, d^{1/3}]$ Mesons are made of quark-<u>antiquark</u> pairs: e.g. pions: $\pi^+ = [u^{2/3} \underline{d}^{+1/3}]$; $\pi^- = [\underline{u}^{-2/3} d^{-1/3}]$; $\pi^0 = [u^{2/3} \underline{u}^{-2/3}] \&$ $\pi^0 = [d^{1/3} \underline{d}^{-1/3}]$ (Pions decay. e.g. $\pi^+ = > W^+ = > \mu^+ + \nu_m$ followed by $\mu^+ = > W^+ = > e^+ + \nu_e$ etc.)

Black-body radiation, Larmor radiation formula, Cyclotron, Synchrotron, & Bremsstrahlung radiation: Planck function: $\mathbf{Bv}(\mathbf{T}) = [2 \mathbf{hv}^3 / \mathbf{c}^2] \{1 / [\exp(\mathbf{hv}/\mathbf{kT}) - 1]\}$ [erg s⁻¹ cm⁻² Hz⁻¹ sr⁻¹] Long-wave (Rayleigh-Jeans or RJ) limit:): $\mathbf{Bv}(\mathbf{T}) = 2 \mathbf{kT} / \lambda^2 = 2 \mathbf{kTv}^2 / \mathbf{c}^2$ " Short-wave limit: $\mathbf{Bv}(\mathbf{T}) = [2 \mathbf{hv}^3 / \mathbf{c}^2] \exp(-\mathbf{hv}/\mathbf{kT})$ " Wavelength of the peak: $\lambda_{\text{peak}} = 0.29 / \mathbf{T}(\mathbf{K})$ [cm] Larmor Radiation formula: Power radiated (erg s⁻¹) $\mathbf{P} = (2/3)\mathbf{e}^2\mathbf{a}^2/\mathbf{c}^3$ a = acceleration $\sim V_{\text{orbit}}^2 / \mathbf{r}$ Gyrofrequency (cyclotron radiation) $\boldsymbol{\omega}_c = \mathbf{eB/mc}$ (radians s⁻¹) orbit time: $\mathbf{P}_{\text{orbit}} = \boldsymbol{\omega}/2\pi$ Synchrotron radiation: beaming angle $\boldsymbol{\theta} = \gamma^{-1}$ Peak of spectrum at: $\boldsymbol{\omega}_s = \gamma^2 \mathbf{eB/mc}$ Spectral index, x: $\mathbf{Sv} = \mathbf{S}_0 \mathbf{v}^x$ Thermal (Rayleigh-Jeans) $\mathbf{x}=2$, non-thermal, $\mathbf{x}=$ negative Bremsstrahlung (free-free from a plasma): $\mathbf{x}\sim 2$ at low v; flat at higher v ($\mathbf{x}=-0.1$ up to $\mathbf{hv} \sim \mathbf{kT}_{\text{plasma}}$) **Radiative Transfer:** Light from background source with intensity or flux, $I_0(\mathbf{v})$ passes through cloud with optical depth, $\tau(\mathbf{v})$, and emissivity, $\varepsilon(\mathbf{v})$. An element of optical optical depth is given by $d\tau(v) = \kappa(v)\rho ds$ where $\kappa(v)$ is the mass abruption coefficient.

The mean free path is $\lambda_{mfp} = 1 / n \sigma(v) = 1 / \kappa(v)\rho$

 $I(v) = I_0(v) \exp[-\tau(v)] + B(v,T) \{1 - \exp[-\tau(v)]\}$ The observed intensity I(v) is: Optically thick $(\tau(v) \gg 1)$: I(v) = B(v,T)

Optically thin $(\tau(\mathbf{v}) \ll 1)$: $I(\mathbf{v}) = I_0(\mathbf{v}) \{1 - \tau(\mathbf{v})\} + \tau(\mathbf{v}) B(\mathbf{v}, T)$

In terms of brightness temperature (or in Rayleigh-Jeans limit):

 $\mathbf{T} = \mathbf{T}_{o} \exp[-\tau(\mathbf{v})] + \mathbf{T}_{cloud} \{ \mathbf{1} - \exp[-\tau(\mathbf{v})] \} \quad \text{Thick:} \quad \mathbf{T} = \mathbf{T}_{cloud} : \text{Thin:} \quad \mathbf{T} = \mathbf{T}_{o}[\mathbf{1} - \tau] + \tau \mathbf{T}_{cl}$ Collision rate: $\mathbf{R}_{col} \sim \mathbf{n}\boldsymbol{\sigma}\mathbf{V}$ (s⁻¹); n = number density (cm⁻³), $\boldsymbol{\sigma}$ =cross-section (cm²), V=velocity (km s⁻¹) Collision rate per unit volume: $\mathcal{R}_{col} \sim \mathbf{n}^2 \sigma \mathbf{V} \ (cm^{-3} s^{-1})$

Einstein spontaneous decay rate: $A_{ul} = 64\pi^4 v_{ul}^3 \mu^2_{ul} / 3hc^3 (s^{-1})$ μ_{ul} is the dipole moment Critical density: $\mathbf{R}_{col} \sim \mathbf{A}_{ul} \Rightarrow \mathbf{n}_{crit} = \mathbf{A}_{ul} / \mathbf{n}\sigma$; $\mathbf{R}_{col} > \mathbf{A}_{ul} \Rightarrow$ thermlized: $\mathbf{R}_{col} < \mathbf{A}_{ul} \Rightarrow$ subthermal Density, number density, column density:

 $\rho = \mu m_{\rm H} n$ [g cm⁻³] μ = mean molecular weight, n = number density of particles [cm⁻³] Solar metallicity gas mass fractions: H: X=0.7; He: Y=0.28; "metals": Z=0.02. X+Y+Z=1

 $\mu = [X + Y/4 + Z/15.5]^{-1} = 1.3$ in neutral atomic gas (HI)

 $\mu = [X/2 + Y/4 + Z/15.5]^{-1} = 2.37$ in molecular gas where H is in H₂

 $\mu = [2X/+Y/4 + Z/15.5]^{-1} = 0.68$ in molecular gas where H is in H⁺(HII), Y & Z are neutral

 $\mu = [2X/+3Y/4 + Z/2]^{-1} = 0.62$ in fully ionized gas (stellar interior)

Interstellar Medium (ISM):

Boltzmann equation: $N_u / N_l = (g_u / g_l) \exp(-[E_u - E_l]/kT)$

Maxwell-Boltzmann velocity distribution function:

 $N_v dv = n (m / 2\pi kT)^{3/2} exp (-mv^2 / 2kT) 4\pi v^2 dv$

Most probably V: $v_{mp} = (2kT/\mu m)^{1/2}$; $v_{rms} = (3kT/\mu m)^{1/2}$; Sound speed: $c_s = (kT/\mu m)^{1/2}$ Saha equation:

 $N_{i+1} / N_i = [2kT Z_{i+1} / P_e Z_i] [2\pi m_e kT/h^2]^{3/2} exp(-X_i / kT)$ $X_i = ionization potential$

 Z_i = Partition function of ionization stage i. $P_e = n_e kT$ = electron pressure.

Phases of the ISM: Molecular Clouds (H₂), HI clouds, HII regions, hot ISM (HIM)

Contents of the ISM: gas, dust, radiation, cosmic rays, magnetic fields

Jeans criterion for **gravitational collapse**: $V_{esc} > c_s => M_J = (5kT / G\mu m_H)^{3/2} (3 / 4\pi \rho)^{1/2}$ Column density: $N(H_2) = n(H_2) L = M(H_2) / [area]$ (cm⁻²): $\rho N(H_2) = \mu m_H n(H_2) L (g \text{ cm}^{-2})$

Extinction (ISM dust): $A_V=1$ magnitude $\Leftrightarrow N(H_2) \sim 10^{21}$ (cm⁻²); A_{λ} is roughly proportional to A_V / λ HII regions. Photo-ionization balance in uniform density medium:

 $Q = L(LyC) = (4/3) \pi R_{s}^{3} n_{e}^{2} \alpha_{B}$ $\alpha_{\rm B} = 2.6 \times 10^{-13} \, {\rm cm}^3 \, {\rm s}^{-1}$

 R_s = "Stromgren radius" ~ $(3Q / 4\pi \alpha_B)^{1/3} n_e^{-2/3}$

External photoionization of a cloud with radius R_o: Flux F = Q / $4\pi D^2$ = (1/3) n_e² $\alpha_B R_o$ Emission measure, EM = n²_e L (cm⁻³ pc) ~ 4.9 x 10¹⁷ I(H α) where I(H α) is in (erg s⁻¹ cm⁻² arcsec⁻²) Shocks & Ionization fronts:

Dense (D-type) fronts: Expanding HII regions sweep-up dense shells expanding with shock-speed Vs: Pressure in the shell, $P_{shell} \sim \rho_o V_s^2 \sim P_{HII} \sim n_e k T_{II} = \rho_{ps} c_s^2$:

Post-shock density: $\rho_{\text{DS}} \sim \rho_0 (V_s/c_s)^2 = \rho_0 \mathcal{M}^2$ where \mathcal{M} is the Mach number.

Blast waves, winds, and expanding HII regions into uniform density media, density = ρ_0 :

The Sedov "trick": V = dR/dt => R/t Mass of a swept-up dense shell, radius R is $M_s = (4/3)\pi R^3 \rho_0$ Energy Conserving (E-cons) => Momentum conserving (P-cons) after a cooling time has elapsed. Blast (<u>E-cons</u>): $E_o = (1/2)M_sV_s^2 \sim R^5/t^2 => \mathbf{R} \sim (\mathbf{E}_o/\rho_o)^{1/5} \mathbf{t}^{2/5} : (\underline{P-cons}) : P_o=M_oV_s \sim R^5/t^2 => \mathbf{R} \sim (\mathbf{P}o/\rho_o)^{1/4} \mathbf{t}^{1/4}$ Wind (<u>E-cons</u>): $1/2[dM_w/dt]V_w^2 = (1/2)M_sV_s^2/t \sim R^5/t^3 => \mathbf{R} \sim \mathbf{C} \mathbf{t}^{3/5} : (\underline{P-cons}): \mathbf{R} \sim \mathbf{C}' \mathbf{t}^{1/2}$ HII expansion (<u>E-cons</u>): $\mathbf{R} \sim \mathbf{C} \mathbf{t}^{4/7}$ In all cases, the shock speed is $V_s \sim d\mathbf{R}/d\mathbf{t}$