Constants of Nature, typical units of measure, and physical \& astronomical formulae (14 Aug. 2019):

Some constants of Nature:

Some units of time:

1 year $\sim[365.25][24][60][60] \sim 3.15 \times 10^{7}$ seconds Age of the Universe: $t_{U} \sim 13.7 \times 10^{9}$ years Planck time $\tau_{\mathbf{P}}=\left(\mathbf{h G} / 2 \pi \mathbf{c}^{\mathbf{5}}\right)^{0.5} \sim 5.4 \times 10^{-44}$ seconds \sim time to cross Planck length at the speed of light

Some units of length:

1 A.U. $=$ "Astronomical Unit" $=1.49597871 \times 10^{13} \mathrm{~cm} \sim \mathbf{1 . 5} \times 10^{13} \mathbf{c m}$: Mean Earth-Sun separation.
$1 \mathrm{pc}=1$ "parsec" $=\mathbf{3 . 0 8 6} \mathbf{x} \mathbf{1 0}{ }^{18} \mathbf{c m}$ (Distance from which 1 A.U. subtends 1 ")
$1 \mathrm{kpc}=10^{3} \mathrm{pc}=3.086 \times 10^{21} \mathrm{~cm}$:
$1 \mathrm{Mpc}=10^{6} \mathrm{pc}=3.086 \times 10^{24} \mathrm{~cm}$
$\mathbf{1} \boldsymbol{\mu \mathrm { m }}$ (micro-meter) $=\mathbf{1 0}^{-6} \mathbf{m}=\mathbf{1 0}^{-4} \mathbf{~ c m ~} \quad \sim 2 x$ wavelength of visual light
1 nm (nano-meter) $=10^{-9} \mathrm{~m}=10^{-7} \mathrm{~cm} \quad \sim$ size of molecules
1 Angstrom $=1 \mathrm{~A}=1 \mathbf{1 0}^{-8} \mathbf{~ c m}$
\sim size of atoms
1 Fermi $=10^{-13} \mathrm{~cm}$
\sim size of atomic nuclei
$\mathrm{R}_{\mathrm{o}}=6.956 \times 10^{10} \mathrm{~cm}$
~ radius of the Sun
Horizon radius of the Universe today: $R_{U} \sim 1.3 \times 10^{28} \mathrm{~cm} \sim$ size of cosmic horizon ($R_{U} \sim c_{\text {Universe }}$)
Planck length $=\lambda_{\mathbf{P}}=\left(\mathbf{h G} / 2 \boldsymbol{\pi} \mathbf{c}^{3}\right)^{0.5} \sim 1.6 \times 10^{-33} \mathrm{~cm} \sim$ wavelength of photon which would collapse into its own black hole. Scale of the "Big Bang", of "String Theory", and black hole singularities.

Some measures of Angle:

A circle contains $\mathbf{3 6 0}{ }^{\circ}=\mathbf{2} \pi$ [radians] (rad)
Radian: $\quad 1$ radian $=360 / 2 \pi$ [degrees] $\sim \mathbf{5 7 . 3}^{\circ}$
Arc-minute: $\quad \mathbf{1}^{\prime}=\mathbf{1 / 6 0}$ of a degree;
Arc-second: $\quad \mathbf{1 "}=\mathbf{1} / 60$ of an arc-minute $=1 / 3600$ of a degree $\sim 1 / 206265$ or a radian Thus $\quad 1$ radian contains $\sim \mathbf{2 0 6}, \mathbf{2 6 5}$ arc-seconds $\sim 57.3 \times 3600$ arc-seconds

Some units of energy:

$$
1 \text { Watt }=10^{7} \mathrm{ergs} \mathrm{~s}^{-1}
$$

1 electron Volt $=\mathbf{1} \mathbf{e V}=\mathbf{1 . 6 0 2} \mathbf{x} \mathbf{1 0}^{-12}[\mathrm{erg}] \quad$ Units of energy: $[\mathrm{erg}]=\left[\mathrm{g} \mathrm{cm}^{2} \mathrm{~s}^{-2}\right]$
Kinetic energy of a particle $\quad \mathbf{E}=1 / 2 \mathbf{m} \mathbf{V}^{2}$
Energy of a photon $\mathbf{E}=\mathbf{h} \boldsymbol{\nu} \quad \boldsymbol{v}=$ frequency in Hz
Energy - mass relation $\quad \mathbf{E}=\boldsymbol{\gamma} \mathbf{m}_{\mathbf{0}} \mathbf{c}^{\mathbf{2}} \quad \mathbf{m}_{\mathbf{0}}=$ rest mass $\quad \Rightarrow \mathrm{m}=\mathrm{E} / \mathrm{c}^{2}$
Thermal energy $\quad \mathbf{E}=\mathbf{k T} \quad \mathbf{T}=$ temperature in Kelvin (degrees above absolute $0,-273 \mathrm{~K}$)
1 megaton explosion $\quad \mathbf{E}_{\mathbf{m t}}=\mathbf{4 . 1 8 4} \mathbf{x 1 0} \mathbf{1 0}^{\mathbf{2 2}}[\mathrm{erg}]: \quad$ A typical supernova $\quad \mathrm{E}_{\text {SN }} \sim 10^{51} \mathrm{ergs}$

Some units of mass and luminosity:

Planck mass : $\mathbf{m}_{\mathbf{P}}=(\mathbf{h c} / \mathbf{2} \boldsymbol{\pi} \mathbf{G})^{0.5} \sim 2.2 \times 10^{-5}$ grams \sim mass-energy of an EM wave with $\boldsymbol{\lambda}=$ Planck length
Mass of a proton: $\mathbf{m}_{\mathbf{H}}=\mathbf{m}_{\mathrm{p}}=\mathbf{1 . 6 7 \times 1 0 ^ { - 2 4 }}$ grams ; Mass of an electron $\mathbf{m}_{\mathbf{e}}=\mathbf{0 . 9 \times 1 0 ^ { - 2 7 }}$ grams Mass of the Sun: $\mathbf{M}_{\mathbf{0}}=\mathbf{1 . 9 8 9 \times 1 0 ^ { 3 3 }} \mathbf{g r a m s}$; Luminosity of the Sun $\mathbf{L}_{\mathbf{0}}=\mathbf{3 . 8 3 9} \times \mathbf{1 0}^{\mathbf{3 3}}\left(\mathrm{erg} \mathrm{s}^{-1}\right)$

Earth: $\quad M_{E}=5.9736 \times 10^{27}$ grams, $\quad R_{E}=6.378 \times 10^{8} \mathbf{c m}$
Jupiter: $\quad M_{J}=1.8986 \times 10^{\mathbf{3 0}}$ grams $\left(\sim 10^{-\mathbf{3}} M_{0}\right), R_{J} \sim 7 \times 10^{9} \mathbf{c m}=7 \times 10^{4} \mathbf{k m}$
Luminosity: $\mathbf{L}=\mathbf{4} \pi \mathbf{R}^{2} \boldsymbol{\sigma} \mathbf{T}^{4} \quad\left(\mathrm{erg} \mathrm{s}^{-1}\right)$ where \mathbf{T} is in Kelvin, R is the radius of the radiating surface.
Flux $\quad \mathbf{F}=\mathbf{L} /\left(\mathbf{4} \pi \mathbf{D}^{\mathbf{2}}\right)\left(\mathrm{erg} \mathrm{s}^{-1} \mathrm{~cm}^{-2}\right) \mathbf{D}$ is distance from the source to where the flux is measured.

Some measures of Geometry:

Circumference of a circle $\mathbf{C}=\mathbf{2} \boldsymbol{\pi} \mathbf{r} \quad$ where r is the radius of the circle
Area of a circle, $A=\pi r^{2}:$ Area of a sphere, $A=4 \pi \mathbf{r}^{2}:$ Volume of a sphere, $A=(4 / 3) \pi r^{3}$

Velocity and acceleration:

Velocity $\quad \mathbf{V}=$ [change in position $] /[$ time interval $]=\Delta \mathbf{x} / \Delta \mathbf{t}$
Acceleration $\mathbf{a}=[$ change in velocity $] /[$ time interval $]=\Delta \mathbf{V} / \Delta \mathbf{t}=\Delta \mathbf{x} / \Delta \mathbf{t}^{\mathbf{2}}$
Forces: Force on particle of mass $m \quad \quad \mathbf{F}=\mathbf{m a} \quad \mathbf{a}=$ acceleration $\quad\left[\mathrm{g} \mathrm{cm} \mathrm{s}^{-2}\right]$
Gravitational force $\quad \mathbf{F}=-\mathbf{G} \mathbf{m} \mathbf{M} / \mathbf{r}^{\mathbf{2}}$ between masses m and M separated by distance \mathbf{r}
Electrostatic force
$\mathbf{F}_{\mathbf{E}}=\mathbf{e}_{1} \mathbf{e}_{2} / \mathbf{r}^{2} \quad$ between charges \boldsymbol{e}_{1} and \boldsymbol{e}_{2} separated by distance \boldsymbol{r}
Magnetic force
Strong Nuclear Force $\mathbf{F}_{\mathbf{B}}=\mathbf{e}_{\mathbf{1}} \mathbf{V x B} / \mathbf{c} \quad \mathbf{F}_{\mathbf{E M}}=\mathbf{F}_{\mathbf{E}}+\mathbf{F}_{\mathbf{B}} \quad V=$ velocity

Weak Nuclear Force short range $\left(10^{-15} \mathrm{~cm}\right)$ responsible for radioactivity and quark decays
Centrifugal (centripedal) force $\mathbf{F}_{\mathbf{c}}=\mathbf{m} \mathbf{V}^{\mathbf{2}} / \mathbf{R} ; \mathbf{V}=$ orbit speed, $\mathbf{R}=$ orbit radius
Power radiated by a charge \mathbf{q}, experiencing acceleration $\mathbf{a}: \mathbf{P}=\mathbf{2} \mathbf{q}^{\mathbf{2}} \mathbf{a}^{\mathbf{2}} / \mathbf{3} \mathbf{c}^{\mathbf{3}}\left(\mathrm{erg} \mathrm{s}^{-1}\right)$ (Larmor)

Gravity \& Orbits:

Circular orbit speed

$$
\mathbf{V}_{\text {orbit }}=(\mathbf{G} \mathbf{M} / \mathbf{r})^{1 / 2}
$$

Escape speed $\mathbf{V}_{\text {escape }}=(\mathbf{2} \mathbf{G M} / \mathbf{r})^{1 / 2}=2^{1 / 2} \mathrm{~V}_{\text {orbit }} \sim 1.414 \mathrm{~V}_{\text {orbit }}$
Gravitational potential energy per gram, $\mathbf{E}_{\mathbf{G}}=\mathbf{G M} / \mathbf{r} ; \quad$ Self energy $\mathbf{E}_{\mathbf{G}} \sim \mathbf{G M}^{2} / \mathbf{r}$
Gravitational collapse time of a cloud with mean density $\rho: \quad \boldsymbol{\tau}_{\text {coll }} \sim \mathbf{1} /(\mathbf{G} \rho)^{\mathbf{0 . 5}}[\mathrm{sec}]$
Accretion rate from a collapsing isothermal sphere $\left[\rho(r)=\rho_{0} r^{-2}\right]: \mathbf{d M} / \mathbf{d t} \sim \mathbf{c}_{\mathbf{s}}^{\mathbf{3}} / \mathbf{G} \quad\left[\mathrm{g} \mathrm{s}^{-1}\right]$
Speed of Sound: $\mathbf{c}_{\mathbf{s}}=\left(\mathbf{k T} / \boldsymbol{\mu} \mathbf{m}_{\mathbf{H}}\right)^{\mathbf{1 / 2}}$
Accretion luminosity produced by accretion rate $\mathrm{dM} / \mathrm{dt}$ onto an object of mass M , radius r :
$\mathbf{L} \sim \mathbf{G M}(\mathbf{d M} / \mathbf{d t}) / \mathbf{r} \quad\left[\mathrm{erg} \mathrm{s}^{-1}\right] \quad ;$ Kelvin-Helmholtz time scale: $\boldsymbol{\tau}_{\mathbf{K H}} \sim \mathbf{G M}^{\mathbf{2}} / \mathbf{R L} \quad[\mathrm{sec}]$
Virial Theorem: $\mathbf{2}<\left[\right.$ Kinetic Energy]> $=-<\left[\right.$ time averaged potential energy] > $\left.\quad ; \mathbf{m V} \mathbf{V}^{\mathbf{2}}\right]=[\mathrm{U}]$ Elliptical orbits \& binaries: Ellipse with semi-major \& semi-minor axes \mathbf{a}, \mathbf{b}, eccentricity \mathbf{e},
 $\mathbf{e}=\Delta \mathbf{x} / \mathbf{2 a}$ where $\Delta \mathbf{x}=$ separation between foci. Reduced mass: $\boldsymbol{\mu}=\mathbf{m}_{1} \mathbf{m}_{\mathbf{2}} /\left(\mathbf{m}_{1}+\mathbf{m}_{\mathbf{2}}\right)$ $\mathbf{r}=\mathbf{a}\left(1-\mathrm{e}^{2}\right) /[1+\mathbf{e} \cos (\theta)]=\left(\mathrm{L}^{2} / \mu^{2}\right) /\left[G M(1+\mathrm{e} \cos (\theta)] \quad ; \quad \mathrm{L}=\mu\left[\mathbf{G M a}\left(1-\mathrm{e}^{2}\right)\right]^{0.5} \quad\right.$ (Kepler I)
$\mathrm{A}=$ Area swept-out; $\quad \mathbf{d A} / \mathbf{d t}=\mathbf{L} / \mathbf{2} \mu ; \quad \mathbf{V}_{\text {orbit }}^{\mathbf{2}}=\mathbf{G}\left(\mathbf{m}_{\mathbf{1}}+\mathbf{m}_{\mathbf{2}}\right)[(\mathbf{2} / \mathbf{r})-(\mathbf{1} / \mathbf{a})] \quad$ (Kepler II)
Orbit Period: $\mathbf{P}^{2}=\mathbf{4} \boldsymbol{\pi}^{\mathbf{2}} \mathbf{a}^{\mathbf{3}} /\left[\mathbf{G}\left(\mathbf{m}_{1}+\mathbf{m}_{2}\right)\right] \quad ; \quad$ Orbit energy: $\mathbf{E}=\mathbf{- G} \mathbf{m}_{1} \mathbf{m}_{\mathbf{2}} / \mathbf{2 a} \quad$ (Kepler III) \backslash

Wavelengths of light \& matter particles:

Speed of light $\quad \mathbf{c}=\boldsymbol{v} \boldsymbol{\lambda} \quad \boldsymbol{\lambda}=$ wavelength $; f=$ frequency
Wavelength of light $\quad \lambda=\mathbf{c} / \boldsymbol{v}$
Wavelength of a particle $\lambda=\mathbf{h} / \mathbf{m V}=\mathbf{h} / \mathbf{p}$ (de Broglie wavelength): $\mathrm{V}=$ particle velocity,
$\mathbf{p}=\mathbf{m} \mathbf{V}=$ momentum of a particle mass $m ; \quad \mathbf{p}=\mathbf{E} / \mathbf{c}=\mathbf{h} \boldsymbol{v} / \mathbf{c}=\mathbf{h} / \boldsymbol{\lambda}=$ momentum of light
Telescopes and resolution: Angular resolution of a telescope:
$\boldsymbol{\theta}=\mathbf{1 . 2 2} \boldsymbol{\lambda} / \mathbf{D} \quad$ [radians]: $\mathbf{D}=$ mirror or lens diameter; $\lambda=$ wavelength
Magnification: $M=F L / f_{e}=\mathbf{D}$ (entrance-pupil) / D(exit-pupil) = Angle(out) / Angle(in)
$\mathbf{f}_{\mathrm{e}}=$ focal length of the eyepiece; $\mathbf{F L}=$ effective focal length of the main mirror or lens
Effective aperture: $\mathbf{A}_{\text {eff }}=\boldsymbol{\eta} \boldsymbol{\pi}(\mathbf{D} / \mathbf{2})^{\mathbf{2}} \quad$ where $\boldsymbol{\eta}={ }^{\prime}$ throughput efficiency' ~ 0.1 to 0.8 typically.

Magnitudes \& Flux:

Apparent Magnitude: $\mathbf{m}=\mathbf{- 2 . 5} \log _{10}\left[\mathbf{F l u x}(\lambda) /\right.$ Flux $\left._{\text {Vega }^{2}}(\lambda)\right] \quad$ (Vega scale)
Absolute magnitude: What the Apparent magnitude would be at $\boldsymbol{D}=10$ pc. $\mathbf{M}_{\mathrm{v}}(\mathrm{Sun})=4.74$
1 Jansky $=1 \mathrm{Jy}=10^{-26} \mathrm{~W} \mathrm{~m}^{-2} \mathrm{~Hz}^{-1}=10^{-23} \mathrm{erg} \mathrm{s}^{-1} \mathrm{~cm}^{-2} \mathrm{~Hz}^{-1}$
Flux of Vega ($\mathrm{m}=0 \mathrm{mag}$.): $\mathbf{3 7 8 1} \mathbf{J y}$ at $\boldsymbol{\lambda}=\mathbf{0 . 5 5} \boldsymbol{\mu m}$ (visual Cousins-Johnson V-filter)
For conversions of \mathbf{m} to $\mathbf{J y}$ in other filters, see ... http://ssc.spitzer.caltech.edu/warmmission/propkit/pet/magtojy/

Non-relativistic Doppler Effect: $\Delta \lambda / \lambda=\Delta f / f=\Delta \mathrm{V} / \mathbf{c}=\mathbf{z}$ (= redshift if $\Delta \mathrm{V}$ is positive) where

$$
\Delta \lambda=\lambda_{\text {observed }}-\boldsymbol{\lambda}_{\text {emitted }} ;-\Delta f=\mathbf{f}_{\text {observed }}-\mathbf{f}_{\text {emitted }} ; \quad \Delta V=\mathbf{V}_{\text {observed }}-\mathbf{V}_{\text {rest }}
$$

Redshift or Blueshift: $\mathbf{z}=\Delta \lambda / \lambda=\left[\lambda_{\text {observed }}-\lambda_{\text {emitted }}\right] / \lambda_{\text {emitted }}=\left[f_{\text {emitted }}-f_{\text {observed }}\right] / f_{\text {observed }}=\Delta \boldsymbol{f} / \boldsymbol{f}$ Relativistic Doppler Effect: $\quad \mathbf{V}=\mathbf{c}\left[\left(\{\mathbf{1}+\mathbf{z}\}^{2}-\mathbf{1}\right) /\left(\{\mathbf{1}+\mathbf{z}\}^{2}+\mathbf{1}\right)\right]$ where $\mathbf{z}=\Delta \lambda / \lambda=$ redshift Lorrentz transformations:

$$
\mathbf{x}=\gamma(\mathbf{x}-\mathbf{V t}) ; \quad \mathbf{v}^{\prime}=\mathbf{y}, \quad \mathbf{x}^{\prime}=\mathbf{z}, \quad \mathbf{t}^{\prime}=\gamma\left(\mathbf{t}-\mathbf{V} \mathbf{x} / \mathbf{c}^{2}\right) \quad \text { with } \quad \beta=\mathbf{v} / \mathbf{c} \quad \& \quad \gamma=\left(1-\beta^{2}\right)^{-1 / 2}
$$

Time-dilation: $\Delta \mathrm{t}_{\text {moving }}=\left(\mathbf{1}-\boldsymbol{\beta}^{2}\right)^{-1 / 2} \Delta \mathrm{t}_{\text {rest }} \quad$ Space-contraction: $\mathbf{L}_{\text {moving }}=\mathbf{L}_{\text {rest }}\left(\mathbf{1}-\boldsymbol{\beta}^{2}\right)^{1 / 2}$

Black Holes, Cosmology, Heisenberg uncertainty:

```
\(\mathbf{R}_{\mathrm{s}}=\mathbf{2} \mathbf{G M} / \mathbf{c}^{2}\)
```

- Radius of a black hole of mass M
V = H D \quad - Hubble's Law; (D in Mpc, V in km/s)
$\mathrm{H} \sim 71 \mathrm{~km} \mathrm{~s}^{-1} / \mathrm{Mpc} \quad-\mathrm{H}$ is the "Hubble constant"
$\Delta \mathbf{p}=\mathbf{h} / \Delta \mathbf{x} \quad \Delta \mathbf{E}=\mathbf{h} / \Delta \mathbf{t} \quad$ - Heisenberg uncertainty principle.

Fundamental particles ("fermions"): "Can't put two or more in the same place - like cars!"
Quarks: Up (u charge $=+2 / 3$ e); Down (d charge $=-1 / 3$ e) \quad Stable in protons \& neutrons Charmed $(\mathbf{c}$ charge $=+2 / 3$ e); Strange $(\mathbf{s}$ charge $=-1 / 3$ e) \quad :Unstable (via Weak force) Top $\quad(\mathbf{t}$ charge $=+2 / 3$ e); Bottom (b charge $=-1 / 3$ e) :Very unstable (via Weak force)
Leptons: Electron_(e charge $=-\mathrm{e})$; e-neutrino $\left(\boldsymbol{v}_{\mathbf{e}}\right.$ charge $\left.=0\right) \quad$: \mathbf{e}-stable; $\boldsymbol{v}_{\mathbf{e}} \boldsymbol{v}_{\mathrm{m}} \boldsymbol{v}_{\mathbf{t}}$-oscillate Muon $\quad\left(\boldsymbol{\mu}\right.$ charge $=+2 / 3$ e); $\boldsymbol{\mu}$-neutrino (v_{m} charge $=0$) :Unstable (via Weak force) Tau $\quad\left(\boldsymbol{\tau}\right.$ charge $=+2 / 3$ e); $\boldsymbol{\tau}$-neutrino $\left(\boldsymbol{v}_{\mathrm{t}}\right.$ charge $\left.=0\right) \quad$:Very unstable (via Weak force) All above have anti-matter counterparts with opposite charge (12 fundamental particles known)

Force carriers ("bosons"):
Photons (electro-magnetic force)
Gravitons (gravitational force)
"Two or more love to be in the same place - like photons in lasers!" W^{+}, W, Z_{0} (weak nuclear force) 8 Gluons (strong nuclear force) Higgs particle: (makes particles such as $\mathrm{W}^{+/-}$and Z_{0} massive)

Neutrons are made of 3 quarks: $\left[\boldsymbol{u}^{2 / 3}, \boldsymbol{d}^{-1 / 3}, \boldsymbol{d}^{1 / 3}\right]$; Protons are made of 3 quarks: $\left[\boldsymbol{u}^{2 / 3}, \boldsymbol{u}^{2 / 3}, \boldsymbol{d}^{1 / 3}\right]$ Mesons are made of quark-antiquark pairs: e.g. pions: $\pi^{+}=\left[\mathrm{u}^{2 / 3} \underline{\mathrm{~d}^{+1 / 3}}\right] ; \pi^{-}=\left[\underline{u}^{-2 / 3} \mathrm{~d}^{-1 / 3}\right] ; \pi^{0}=\left[\mathrm{u}^{2 / 3} \underline{u^{-2 / 3}}\right] \&$ $\pi^{0}=\left[\mathrm{d}^{1 / 3} \underline{\mathrm{~d}^{-1 / 3}}\right]$ (Pions decay. e.g. $\pi^{+}=>W^{+}=>\mu^{+}+v_{\mathrm{m}}$ followed by $\mu^{+}=>W^{+}=>\mathrm{e}^{+}+\boldsymbol{v}_{\mathrm{e}}$ etc.)

Black-body radiation, Larmor radiation formula, Cyclotron, Synchrotron, \& Bremsstrahlung radiation:

Planck function: $\quad \mathbf{B} \boldsymbol{v}(\mathbf{T})=\left[\mathbf{2} \mathbf{h} \boldsymbol{v}^{\mathbf{3}} / \mathbf{c}^{\mathbf{2}}\right]\{\mathbf{1} /[\exp (\mathbf{h} \boldsymbol{v} / \mathbf{k T})-\mathbf{1}]\} \quad\left[\mathrm{erg} \mathrm{s}^{-1} \mathrm{~cm}^{-2} \mathrm{~Hz}^{-1} \mathrm{sr}^{-1}\right]$
Long-wave (Rayleigh-Jeans or RJ) limit:): $\mathbf{B} \boldsymbol{v}(\mathbf{T})=\mathbf{2} \mathbf{k T} / \lambda^{2}=\mathbf{2} \mathbf{k T} \boldsymbol{v}^{2} / \mathbf{c}^{2}$
Short-wave limit: $\quad \mathbf{B} \boldsymbol{v}(\mathbf{T})=\left[\mathbf{2} \mathbf{h} \boldsymbol{v}^{3} / \mathbf{c}^{2}\right] \exp (-\mathbf{h} v / \mathbf{k} \mathbf{T})$
Wavelength of the peak:
$\lambda_{\text {peak }}=0.29 / T(K)[\mathrm{cm}]$
Larmor Radiation formula: Power radiated ($\mathrm{erg} \mathrm{s}^{-1}$) $\quad \mathbf{P}=(\mathbf{2} / \mathbf{3}) \mathbf{e}^{\mathbf{2}} \mathbf{a}^{2} / \mathbf{c}^{\mathbf{3}} \quad \mathrm{a}=$ acceleration $\sim \mathrm{V}^{2}{ }_{\text {orbit }} / \mathrm{r}$
Gyrofrequency (cyclotron radiation) $\omega_{\mathbf{c}}=\mathbf{e B} / \mathbf{m c}$ (radians s ${ }^{-1}$) orbit time: $\mathbf{P}_{\text {orbit }}=\omega / 2 \pi$
Synchrotron radiation: beaming angle $\theta=\gamma^{-1}$ Peak of spectrum at: $\omega_{s}=\gamma^{2} \mathbf{e B} / \mathbf{m c}$
Spectral index, $\mathbf{x}: \quad \mathbf{S} \boldsymbol{v}=\mathbf{S}_{\mathbf{0}} \boldsymbol{v}^{\mathbf{x}}$ Thermal (Rayleigh-Jeans) $\mathbf{x}=\mathbf{2}$, non-thermal, $\mathbf{x}=$ negative
Bremsstrahlung (free-free from a plasma): $\mathbf{x} \sim \mathbf{2}$ at low v; flat at higher $v \quad\left(\mathbf{x}=-\mathbf{0} .1\right.$ up to $\mathrm{h} v \sim \mathrm{kT}_{\text {plasma }}$)

Radiative Transfer: Light from background source with intensity or flux , $\mathbf{I}_{\mathbf{0}}(\boldsymbol{v})$ passes through cloud with optical depth, $\boldsymbol{\tau}(\boldsymbol{v})$, and emissivity, $\boldsymbol{\varepsilon}(\boldsymbol{v})$. An element of optcial optical depth is given by $\mathbf{d} \tau(v)=\kappa(v) \rho d s$ where $\kappa(v)$ is the mass abruption coefficient.
The mean free path is $\quad \lambda_{\text {mfp }}=\mathbf{1} / \mathbf{n} \boldsymbol{\sigma}(v)=1 / \kappa(v) \rho$
The observed intensity $\mathrm{I}(v)$ is: $\quad \mathbf{I}(v)=\mathbf{I}_{\mathbf{0}}(v) \exp [-\tau(v)]+\mathbf{B}(v, \mathbf{T})\{1-\exp [-\tau(v)]\}$
Optically thick $(\tau(v) \gg 1): \quad \mathbf{I}(v)=\mathbf{B}(\boldsymbol{v}, \mathbf{T})$
Optically thin $(\tau(v) \ll 1): \quad \mathbf{I}(v)=\mathbf{I}_{\mathbf{0}}(v)\{\mathbf{1}-\tau(v)\}+\tau(v) \mathbf{B}(v, \mathbf{T})$
In terms of brightness temperature (or in Rayleigh-Jeans limit):

Collision rate: $\mathbf{R}_{\text {col }} \sim \mathbf{n} \boldsymbol{\sigma} \mathbf{V}\left(\mathrm{s}^{-1}\right) ; \mathrm{n}=$ number density $\left(\mathrm{cm}^{-3}\right), \sigma=$ cross-section $\left(\mathrm{cm}^{2}\right)$, $\mathrm{V}=$ velocity $\left(\mathrm{km} \mathrm{s}^{-1}\right)$
Collision rate per unit volume: $\mathcal{R}_{\text {col }} \sim \mathbf{n}^{2} \boldsymbol{\sigma} V\left(\mathrm{~cm}^{-3} \mathrm{~s}^{-1}\right)$
Einstein spontaneous decay rate: $\mathrm{A}_{\mathrm{ul}}=64 \pi^{4} v_{\mathrm{ul}}{ }^{3} \mu_{\mathrm{ul}}^{2} / 3 \mathrm{hc}^{3}\left(\mathrm{~s}^{-1}\right) \quad \mu_{\mathrm{ul}}$ is the dipole moment
Critical density: $\mathbf{R}_{\text {col }} \sim \mathrm{A}_{\mathrm{ul}}=>\mathbf{n}_{\text {crit }}=\mathbf{A}_{\mathrm{ul}} / \mathbf{n} \boldsymbol{\sigma} ; \mathbf{R}_{\text {col }}>\mathbf{A}_{\mathrm{ul}}=>$ thermlized: $\mathbf{R}_{\text {col }}<\mathbf{A}_{\mathrm{ul}} \Rightarrow$ subthermal
Density, number density, column density:
$\boldsymbol{\rho}=\boldsymbol{\mu} \mathbf{m}_{\mathbf{H}} \mathbf{n}\left[\mathrm{g} \mathrm{cm}^{-3}\right] \quad \boldsymbol{\mu}=$ mean molecular weight, $\mathbf{n}=$ number density of particles $\left[\mathrm{cm}^{-3}\right]$
Solar metallicity gas mass fractions: $\mathrm{H}: \mathbf{X}=\mathbf{0 . 7}$; $\mathrm{He}: \mathbf{Y}=\mathbf{0 . 2 8 ;}$ "metals": $\mathbf{Z}=\mathbf{0} \mathbf{. 0 2} . \quad \mathbf{X}+\mathbf{Y}+\mathbf{Z}=\mathbf{1}$
$\mu=[\mathbf{X}+\mathbf{Y} / \mathbf{4}+\mathbf{Z} / \mathbf{1 5 . 5}]^{-1}=\mathbf{1 . 3}$ in neutral atomic gas (HI)
$\boldsymbol{\mu}=[\mathbf{X} / \mathbf{2}+\mathbf{Y} / \mathbf{4}+\mathbf{Z} / \mathbf{1 5 . 5}]^{-1}=\mathbf{2 . 3 7}$ in molecular gas where H is in H_{2}
$\boldsymbol{\mu}=[\mathbf{2 X} /+\mathbf{Y} / \mathbf{4}+\mathbf{Z} / \mathbf{1 5 . 5}]^{-1}=\mathbf{0 . 6 8}$ in molecular gas where H is in $\mathrm{H}^{+}(\mathrm{HII}), \mathrm{Y} \& \mathrm{Z}$ are neutral
$\boldsymbol{\mu}=[\mathbf{2 X} /+\mathbf{3 Y} / 4+\mathbf{Z} / 2]^{-1}=\mathbf{0 . 6 2}$ in fully ionized gas (stellar interior)

Interstellar Medium (ISM):

Boltzmann equation: $\mathrm{N}_{\mathrm{u}} / \mathrm{N}_{\mathrm{l}}=\left(\mathrm{g}_{\mathrm{u}} / \mathrm{g}_{\mathrm{l}}\right) \exp \left(-\left[\mathrm{E}_{\mathrm{u}}-\mathrm{E}_{1}\right] / \mathrm{kT}\right)$
Maxwell-Boltzmann velocity distribution function:
$N_{v} d v=n(m / 2 \pi k T)^{3 / 2} \exp \left(-\mathrm{mv}^{2} / 2 \mathrm{kT}\right) 4 \pi v^{2} \mathrm{dv}$
Most probably V: $\mathrm{v}_{\mathrm{mp}}=(2 \mathrm{kT} / \mu \mathrm{m})^{1 / 2} ; \mathrm{v}_{\mathrm{rms}}=(3 \mathrm{kT} / \mu \mathrm{m})^{1 / 2}$; Sound speed: $\mathrm{c}_{\mathrm{s}}=(\mathrm{kT} / \mu \mathrm{m})^{1 / 2}$
Saha equation:
$\mathrm{N}_{\mathrm{i}+1} / \mathrm{N}_{\mathrm{i}}=\left[2 \mathrm{kT} \mathrm{Z} \mathrm{i}_{\mathrm{i}+1} / \mathrm{P}_{\mathrm{e}} \mathrm{Z}_{\mathrm{i}}\right]\left[2 \pi \mathrm{~m}_{\mathrm{e}} \mathrm{kT} / \mathrm{h}^{2}\right]^{3 / 2} \exp \left(-\mathrm{X}_{\mathrm{i}} / \mathrm{kT}\right) \quad \mathrm{X}_{\mathrm{i}}=$ ionization potential
$Z_{i}=$ Partition function of ionization stage i. $P_{e}=n_{e} k T=$ electron pressure.
Phases of the ISM: Molecular Clouds (H_{2}), HI clouds, HII regions, hot ISM (HIM)
Contents of the ISM: gas, dust, radiation, cosmic rays, magnetic fields
Jeans criterion for gravitational collapse: $\mathrm{V}_{\text {esc }}>\mathrm{c}_{\mathrm{s}} \Rightarrow \mathrm{M}_{\mathrm{J}}=\left(5 \mathrm{kT} / \mathrm{Gum}_{\mathrm{H}}\right)^{3 / 2}(3 / 4 \pi \rho)^{1 / 2}$
Column density: $\mathrm{N}\left(\mathrm{H}_{2}\right)=\mathrm{n}\left(\mathrm{H}_{2}\right) \mathrm{L}=\mathrm{M}\left(\mathrm{H}_{2}\right) /[$ area $] \quad\left(\mathrm{cm}^{-2}\right): \rho \mathrm{N}\left(\mathrm{H}_{2}\right)=\mu \mathrm{m}_{-} \mathrm{n}\left(\mathrm{H}_{2}\right) \mathrm{L}\left(\mathrm{g} \mathrm{cm}^{-2}\right)$
Extinction (ISM dust): $\mathrm{A}_{\mathrm{v}}=1$ magnitude $\Leftrightarrow \mathrm{N}\left(\mathrm{H}_{2}\right) \sim 10^{21}\left(\mathrm{~cm}^{-2}\right) ; \quad \mathrm{A}_{\lambda}$ is roughly proportional to $\mathrm{A}_{\mathrm{V}} / \lambda$
HII regions. Photo-ionization balance in uniform density medium:

$$
\begin{aligned}
& \mathrm{Q}=\mathrm{L}(\mathrm{LyC})=(4 / 3) \pi \mathrm{R}_{\mathrm{s}}^{3} \mathrm{n}_{\mathrm{e}}^{2} \alpha_{\mathrm{B}} \quad \alpha_{\mathrm{B}}=2.6 \times 10^{-13} \mathrm{~cm}^{3} \mathrm{~s}^{-1} \\
& \mathrm{R}_{\mathrm{s}}=\text { "Stromgren radius" } \sim\left(3 \mathrm{Q} / 4 \pi \alpha_{\mathrm{B}}\right)^{1 / 3} \mathrm{n}_{\mathrm{e}}^{-2 / 3}
\end{aligned}
$$

External photoionization of a cloud with radius R_{0} : Flux $F=Q / 4 \pi D^{2}=(1 / 3) n_{e}^{2} \alpha_{B} R_{0}$
Emission measure, $\mathrm{EM}=\mathrm{n}_{\mathrm{e}}^{2} \mathrm{~L}\left(\mathrm{~cm}^{-3} \mathrm{pc}\right) \sim 4.9 \times 10^{17} \mathrm{I}(\mathrm{H} \alpha)$ where $\mathrm{I}(\mathrm{H} \alpha)$ is in $\left(\mathrm{erg} \mathrm{s}^{-1} \mathrm{~cm}^{-2} \operatorname{arcsec}{ }^{-2}\right)$
Shocks \& Ionization fronts:
Dense (D-type) fronts: Expanding HII regions sweep-up dense shells expanding with shock-speed V_{s} :
Pressure in the shell, $\mathrm{P}_{\text {shell }} \sim \rho_{\mathrm{o}} \mathrm{V}_{\mathrm{s}}{ }^{2} \sim \mathrm{P}_{\mathrm{HII}} \sim n_{\mathrm{e}} \mathrm{kT} \mathrm{TII}=\rho_{\mathrm{ps}} \mathrm{c}_{\mathrm{s}}{ }^{2}:$
Post-shock density: $\rho_{\mathrm{ps}} \sim \rho_{\mathrm{o}}\left(\mathrm{V}_{\mathrm{s}} / \mathrm{c}_{\mathrm{s}}\right)^{2}=\rho_{\mathrm{o}} \mathcal{M} \mathcal{M}^{2} \quad$ where \mathcal{M} is the Mach number.
Blast waves, winds, and expanding HII regions into uniform density media, density $=\rho_{0}$:
The Sedov "trick": $V=d R / d t=>R / t \quad$ Mass of a swept-up dense shell, radius R is $\mathbf{M}_{s}=(\mathbf{4} / \mathbf{3}) \pi R^{3} \rho_{\text {o }}$ Energy Conserving (E-cons) $=>$ Momentum conserving (P-cons) after a cooling time has elapsed. Blast (E-cons): $\mathrm{E}_{\mathrm{o}}=(1 / 2) \mathrm{M}_{\mathrm{s}} \mathrm{V}_{\mathrm{s}}{ }^{2} \sim \mathrm{R}^{5} / \mathrm{t}^{2} \Rightarrow \mathbf{R} \sim\left(\mathbf{E}_{0} / \boldsymbol{\rho}_{\mathbf{o}}\right)^{1 / 5} \mathbf{t}^{2 / 5}:(\mathrm{P}-\mathrm{cons}): \mathrm{P}_{\mathrm{o}}=\mathrm{M}_{\mathrm{o}} \mathrm{V}_{\mathrm{s}} \sim \mathrm{R}^{5} / \mathrm{t}^{2}=>\mathbf{R} \sim\left(\mathbf{P o} / \boldsymbol{\rho}_{\mathrm{o}}\right)^{1 / 4} \mathbf{t}^{1 / 4}$ Wind (E-cons): $1 / 2\left[\mathrm{dM}_{\mathrm{w}} / \mathrm{dt}\right] \mathrm{V}_{\mathrm{w}}{ }^{2}=(1 / 2) \mathrm{M}_{\mathrm{s}} \mathrm{V}_{\mathrm{s}}{ }^{2} / \mathrm{t} \sim \mathrm{R}^{5} / \mathrm{t}^{3} \Rightarrow \mathbf{R} \sim \mathbf{C} \mathbf{t}^{3 / 5}: \quad$ (P-cons): $\mathbf{R} \sim \mathbf{C}^{\prime} \mathbf{t}^{1 / 2}$
HII expansion (E-cons): $\mathbf{R} \sim \mathbf{C t}^{4 / 7} \quad$ In all cases, the shock speed is $V_{s} \sim \mathrm{dR} / \mathrm{dt}$

