
CHAPTER 11 :  BREMSSTRAHLUNG 

Bremsstrahlung is a German word that literally means “braking radiation”. It is the 
radiation process that occurs when charged particles decelerate (brake) by collisions with 
other particles.  

 
11 .1  THERMAL BREMSSTRAHL UNG 

 
Thermal Bremsstrahlung is the emission from a gas that is at least partially ionized 

and therefore contains charged particles. It is called thermal bremsstrahlung because it is 
assumed that the gas is in a thermal equilibrium.  More specifically, the gas has the  
Maxwellian distribution of velocities to be expected from gas in thermal equilibrium. 

For (relative) simplicity, in this section we shall look at the case of a fully ionized, 
pure hydrogen gas. As such, it is composed of electrons and protons in equal numbers. To 
be fully ionized due to thermal processes, the temperature will be significantly above 
10,000K. We further assume that the gas is of sufficiently low density that only two 
particle collisions occur and that the gas is optically thin, so that a photon, once 
generated, escapes the system without further interaction. 

Three kinds of collisions can occur.  Electron-electron and proton-proton collisions are 
very weak emitters of radiation because there is no dipole component to the collision. 
Thus the collisions between electrons and protons are the dominant source of radiation. 

To derive the integrated output of such a plasma we start with the formula for the 
emissivity: 
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where 4πjνdν is the power emitted per unit volume of gas into 4π  steradians between 
frequencies ν and ν+dν.  ne is the density of electrons and ni is the density of ions 
(protons) which is the same in this case. v is the velocity of a collision and f(v) is the 
probability distribution of velocities.  Eν(v) is the energy emitted at frequency ν from a 
collision at velocity v averaged over all impact distances. 

The logic of this expression can be understood by inspection. ne is the number of 
electrons in a cubic centimeter of gas and the first term in parentheses thus represents the 
number of electrons moving at velocity v. This term is then multiplied by v to obtain the 
total path swept out by particles at velocity v in one second. Multiplying by the number 
of ions in that volume gives the number of collisions.  Then, the term Eν(v) gives the 
energy emitted at frequency ν from a collision at velocity v.  By integrating over all 
velocities we get the total output at frequency ν. 
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Figure 11.1: The impact parameter, b, is the distance of closest approach that an 
electron would experience passing by the proton. 



We begin by deriving an expression for Eν(v). Each collision is characterized by the 
impact parameter as shown in Figure 11.1. During the collision, the acceleration of the 
electron is given by 
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Where e is the charge of the electron, m is the electron mass, and b is the impact 

parameter. The impact occurs for a period of time given by 
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So that the emission frequency is  
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Then, by Larmor’s formula, we have  
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So we have 
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So we find that  
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are emitted at ν=v/2πb from a collision at v and b. 
 
Since ν and b are inversely related, we write that 
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Hence 
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But 
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And combining we find 
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Which is the form needed for equation 11.1  The other term needed for equation 11.1 

is the distribution of velocities. Since it is assumed this gas is in thermal equilibrium, we 
have 
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Which it the Maxwellian distribution of velocities. 
 
Combining equations 11.12 and 11.13 into equation 11.1, we find 
 

dv
vmc

e
ve

kT
m

nnj kT
mv

v
ie 223

62
32

2
3

3
8

4
2

4
2

min

π
π

π
π υ

−
∞

∫ 





=

 (11.14) 

 
Where vmin is the minimum impact velocity at which a photon of energy ν can be 

emitted, which is set by 
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The integral can be evaluated directly and yields 
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Which, when evaluated, becomes 
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This result is plotted in Figure 11.2.  At low frequency, the spectrum is nearly 

constant, and becomes an exponential decay as the photon energy approaches the kinetic 
energy of the average electron. It is this simple function that is fit to the spectra of many 

x-ray sources. 
Carrying the calculation to its conclusion, we find the total emission per cubic 

centimeter of plasma is 
 

 

Figure 11.2: The spectrum of a pure hydrogen, fully ionized plasma is essentially flat up until 
the thermal cutoff near hν=kT. 

 

Figure 11.3:  The emissivity of a purely ionized gas rises as the square root of the temperature. 
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which shows the power emitted by a cubic centimeter of gas. 
Inspection of this equation is instructive as to the nature of bremsstrahlung emission. 

The output is dependent on only two astrophysical parameters, the density of the gas (in 
particles per cubic centimeter) and the temperature. The power emitted rises as the square 
of the density but only as the square root of the temperature.  For convenience we bundle 
all of the physics into a function Λ(T) which, in the case of fully ionized pure hydrogen,  
is given by 
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And the power is given by 
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Of course, the energy source that is drawn upon as the volume of gas radiates is the 

thermal energy of the particles.  After each collision, the electron is moving, on average, 
slower. Absent the input of new energy, the temperature of the plasma will drop. The 
electrons lose their energy first, but it can often take considerably longer for the protons 
to transfer their thermal energy to the electrons, and the two populations of particles can 
have somewhat different temperatures. 

We can see how long it takes for the plasma to cool by considering that the total 
energy resident in the electrons is given by: 
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So that the timescale for significant loss of energy is given by 
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Or, if the energy in the protons can be transferred, the timescale will be twice as long. 
 
 

EXAMPLE 11.1 

An example of a radiating ball. 



 

 
A remarkable feature of this result is that it can be used to estimate the density of an 

emitting plasma, see example 11.3. 
 
 

 
 

11.2 THERMAL BREMSSTRAHLUNG WITH LINES 

 
As was discussed in Chapter 5, the level of ionization of gas depends heavily on its 

temperature.  There is very little ionization of cosmic composition gas below 104K rising 
to almost total ionization above 108K. So the results in the preceding section are correct 
only in the hottest plasmas. In most environments, there are significant numbers of atoms 

and ions and they change completely the 
output of thermal bremsstrahlung. 

When an atom undergoes a collision with 
an another particle its internal electrons can 
be excited to higher bound levels or stripped 
entirely into a free state. These electrons can 
then fall back toward their base state, 
emitting photons in the process.  From a free 
state, this is called free-bound emission and 
from a bound state this is simply line 
emission. 

The atomic physics involved in calculating 
the response of an atom in a plasma is quite 
complicated. The quantum mechanics of 
transition must be calculated for each atomic 
level in each ionization state of each element 
in the gas. Nonetheless, astrophysicists have 
done the work and have provided the results 
so that can be used to interpret data. 

A spectrum from an actual source is 
usually generated by gas at a range of 

EXAMPLE 11.2 

Instability of star- like plasma for x-ray stars. 

EXAMPLE 11.3 

Flare. 

 

Figure 11.4: When an atom or ion is excited, 
the electron is raised to a higher energy state 
that is either a bound or free state. When the 
electron decays from a bound state it emits 
an emission line.  This process can dominate 
the gas emission. 



temperatures showing a range of ionization states. Each ionization state of each element 
has a different set of lines related to a temperature range. So, each line can be used as a 
diagnostic as the output of that line is related to the density of electrons times the density 
of ions just as in equation 11.14. Thus the ability to detect and measure intensities of 
emission lines is a rich diagnostic of the state of the emitting matter. 

At any given temperature, a gas of cosmic composition, given enough time will reach 
ionization equilibrium, and the distribution of ions becomes predictable. The total output 
of each species can be predicted and the species summed to predict the total output. 
Because of the inherent complexity, the emission physics is all bundled into the Λ(T) 
emissivity function introduced in equation 11.20.  So we once again have 
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This function has theBut this time, 

there is a great deal of complexity in the 
form of Λ(T). This information is 
provided in tabular or graphical form to 
the astrophysicist who wishes to 
interpret data. The power varies as the 
square of the electron density in most 
cases. 

Figure 11.5 gives a summary of Λ(t) 
over a broad range of temperatures. At 
low temperatures, where the kinetic 
energies of motion are too low to excite 
many atomic transitions, the rotational 
states of molecules can provide some 

emission lines and cooling. 
At about 10,000K hydrogen starts to ionize and there is a dramatic increase in the 

emissivity, most of it coming from the Lyman α line. As the temperature continues to 
rise, the fraction of hydrogen that remains bound starts to drop and the emission lines 
become weaker.  However, helium has a higher ionization potential and still has ions with 
bound electrons, so that the emission lines of HeI and HeII dominate the output of the 
plasma. At higher temperatures still, other heavier elements become dominant and a 
thicket of bright spectral lines emerges. As the temperature continues to rise successively 
heavier elements become fully ionized and the total emission keeps dropping. By 107K, 
only high ionization states of iron remain in significant quantities.  So, above 107K, the 
fully ionized approximation becomes valid and the emissivity starts to rise again, this 
time as the square root of temperature. 

 

Figure 11.5:  The emissivity of a cosmic 
composition gas is plotted as a function of 
temperature. 



 
 

11 .3 NON-THERMAL BREMSSTRAHLUNG 

 
This section to be written later.  Will explain thick target bremsstrahlung and other 

variations on the theme. 
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