
CHAPTER 8:  RADIATION FROM CHARGES 

Astrophysics is the discipline of applying physics to understanding the constituents of 
the universe.  Since nearly all of our knowledge of the universe has been carried to us by 
electromagnetic radiation, we must first understand the mechanisms that create photons 
before we can test models of the nature of the objects that emitted them. 

Our understanding of light derives first from classical electromagnetic theory as 
derived in the 19th Century.  In the early to mid 20th 
Century this theory was integrated into quantum 
mechanics so that we now have a reliable 
understanding of the physics of photon emission. 

In astrophysics we are looking complicated 
ensembles of particles. The physical status of the 
material doing the emitting gives rise to the intensity 
and spectrum of the object, but deep inside, on a 
microscopic scale, it is the acceleration and 
deceleration of charged particles that create all the 
photons. 

In this chapter we present a simplified version of 
the radiation from a single charged particle.  In the 
subsequent chapters we use these simple formulae to 
explain the output of full systems under certain 
circumstances. 

 
2.1 AN ISOLATED CHARGE 

 
We start with the simplest case, which is that of an electron at rest. Classical E&M 

tells us that the power radiated per steradian is given by: 
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Where θ is the angle of the radiation relative to the direction of the acceleration, a, of 

the particle. It does not matter what force causes the acceleration, the output is only 
dependent on the magnitude and direction of the acceleration. 

In equation 8.1 e is the electric charge of the electron in electrostatic units (esu). We 
usually are concerned with the output of individual electrons.  Protons can emit too, and 
have the same output as an electron at the same acceleration, yet we normally ignore their 
output. Because a proton has nearly two thousand times the mass of the electron, its 
acceleration is typically two thousand times lower and its output 4 million times lower 
than an electron.  Since electrons and protons are usually present in similar numbers, any 
proton signal is usually unobservable and of no significant impact on the system. 

Equation 8.1 also assumes that the charge is exactly that of the electron.  However, 
larger charges can be assembled out of smaller units.  If they are accelerated together, as 

 

Figure 8.1: The radiation from a 
particle emits in a doughnut-
shaped pattern. The radiation is 
primarily perpendicular to the 
direction of acceleration. 



a unit, then the power radiated rises as the square of the number of charges.  If the 
individual charges do not stay coherent, then the power rises linearly with the number of 
charges. For most cases in astrophysics the particles react individually, and the output is 
simply the sum of the individuals. 

The fact that the radiation goes outward in a ring, perpendicular to the direction of 
accperation explains why radio antennae on cars are pointed upward.  A radio station 
wishes its signal to blanket the countryside where the listener are and does not wish to 
communicate with targets directly overhead, so their antennae are pointed skyward and 
the electrons are acclerated in a vertical direction.  The radio waves then spread outward 
along the ground in all directions.  Radio reception is best when the electric field of the 
wave accelerates electrons along the long direction of the antenna. So car radios are also 
pointed skyward. It is odd, but true, that should an antenna be pointed directly at you, you 
would be located at the sinθ=0 position and unable to see any signal. 

We are also interested in the total output of the radiation. By integrating the output 
over all directions we find: 
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which is known as the Larmor Formula.  The total power emitted by the charge rises as 
the square of its acceleration.  This simple formula will be of great use in understanding 
astrophysical emission mechanisms. 

 
2.2 A RELATIVISTIC CHARGE 

Astrophysics is blessed with many high energy objects that have particles moving very 
close to the speed of light.  When a relativistic particle is accelerated it still emits, but the 
situation gets more complicated. Because the direction of the relativistic motion and the 
direction of the acceleration are not necessarily the same, the symmetry of radiation can 
be broken.  
In the case where the acceleration and velocity are co-linear, the output of the charge is 
given by: 
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EXAMPLE 

An isolated electron is dropped just above the surface of the Earth.  How much 
radiation does it emit while in free-fall?  If it is dropped from a height of 
10,000cm and is stopped in the first 100microns of rock that it encounters, how 
much radiation does it emit? 

Answer:  xxx 



Where β is v/c in the usual way. Since the new term in the denominator is always less 
than one, the total output in the relativistic case is larger. As β approaches one, the 
amplification can be quite large. In Figure 8.2 we show the effect of relativity on the 
doughnut of emission. When β is very close to one, the emission appears to be beamed 
directly forward, and very little escapes to the sides. 

 
In the case where the acceleration is perpendicular to the direction of motion, the formula 
is even more complex. 
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This even more complex formula is dependent on the same θ as before, but also on the 

angle ϕ which is the angle with respect to the direction of motion.  An example of the 
pattern is shown in Figure 8.3. 

In astronomical settings we rarely see an emitting particle with such precision.  There 
is usually a range of angles involved which washes out the fine structure.  However, in 
some cases, like synchrotron radiation (chapter 10) the forward beaming of particles in a 
magnetic field can lead to major changes in appearance as a function of angle. 

As before, we can integrate over all directions to find the total power radiated. The 
result is quite similar to the Larmor formula with the addition of  a relativistic term. 

 

 

Figure 8.3:  When the acceleration and 
velocity are perpendicular, the doughnut 
of emission is still warped forward.  To 
the left is shown the radiation pattern as 
viewed from the side with the velocity to 
the right and the acceleration upward. To 
the right is the view of the pattern as 
seen if the particle were headed directly 
toward you. 

 

 

Figure 8.2:  When the acceleration and 
velocity are in the same direction, the 
doughnut of emission is warped forward.  
Above, at 60% the speed of light, the 
region of highest emission is bent 
forward about 45 degrees.  Below, at 
95% of c, the radiation appears in a 
needle, aimed almost straight forward. 
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In the case of co-linear velocity and acceleration, γ is the usual relativistic dilation 

term given by 
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When the acceleration is perpendicular to the velocity, the relativistic effect becomes 

even stronger 
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It is noteworthy that the radiation losses rise as the square of γ in the first case and as 

the fourth power in the second.  Thus synchrotrons, wherein the particles are accelerated 
in circular orbits will lose energy through radiation at a higher rate than in linear 
accelerators. 

 
2.3 FREQUENCY OF RADIATION 

Larmo’s formula tells us how much power is radiated, and into which direction it will 
go, but does not tell us at what frequency to expect the radiation. Since the wavelength of 
emission is crucial to understanding the environment, we need a simple way to predict 
where the light is emitted. 

The power radiated can be thought of as the sum of waves over time. As is usual in 
optics, the power is proportional to the square of the sum of the amplitudes driven by an 
acceleration. A simple explanation can be found in the formula: 
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In this formula, a(t) is the acceleration of the particle as a function of time.  It is non-

zero through the period of time from 0 to τ.   ν is the frequency at which the power 
emerges, so the frequency of emission is directly related to the timescale on which the 
acceleration changes. 

If the acceleration is constant for a period of time τ, then the formula becomes: 
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Which tends to zero if ντ is significantly 

greater than one and the fall-off of the 
acceleration is smooth on that timescale as well. 
If, on the other hand, the acceleration comes and 
goes on a timescale such that the exponential 
term does not have a chance to vary, then 
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Which is a positive definite integral independent of ν.  So, for uniform acceleration we 

have a uniform distribution of power up to the point where 
 

πτ
ν

2
1

<  

 
As shown schematically in Figure 8.4 

 
 
Normally we find the radiation at frequencies below the inverse of time across which 

the acceleration was applied. 
 
 
 

EXAMPLE 

A capacitor discharges in 10µs, accelerating electrons out of their former 
equilibrium. At what frequency should we look for radiation? 

Answer:  10µs=10-5s.  Therefore ν<(1/2π10-5) = 16kHz.  There will be a burst of 
radiation at all frequencies below 16kHz. 

 

Figure 8.4: The spectral output due to 
uniform acceleration for some period of 
time is uniform up to a cutoff set by 1/2πτ. 



EXERCISES 

3. After being struck by the phasers of an enemy starship, the Enterprise is left with a net 
negative charge of 1019 electrons.  The Enterprise charges directly at its enemy, 
accelerating smoothly from rest to .33c in 5 seconds. 

a) How much energy does it radiate? 

b) How much of this flux does the enemy see? 

c) To avoid a collision the Enterprise ceases forward acceleration and starts the same 
acceleration perpendicular to its motion.  What is the maximum flux the enemy could 
detect (in ergs/cm2/s) at 105cm separation. 
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