A very deep Chandra observation of the Perseus cluster: shocks, ripples and conduction

A. C. Fabian,1* J. S. Sanders,1 G. B. Taylor,2,3,4 S. W. Allen,1,2 C. S. Crawford,1 R. M. Johnstone1 and K. Iwasawa1

1Institute of Astronomy, Madingley Road, Cambridge CB3 0HA
2Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, 382 Via Pueblo Mall, Stanford, CA 94305-4060, USA
3National Radio Astronomy Observatory, Socorro, NM 87801, USA
4University of New Mexico, Department of Physics & Astronomy, Albuquerque, NM 87131, USA

Accepted 2005 November 22. Received 2005 November 22; in original form 2005 October 11

ABSTRACT

We present the first results from a very deep Chandra X-ray observation of the core of the Perseus cluster of galaxies. A pressure map reveals a clear thick band of high pressure around the inner radio bubbles. The gas in the band must be expanding outwards and the sharp front to it is identified as a shock front, yet we see no temperature jump across it; indeed, there is more soft emission behind the shock than in front of it. We conclude that in this inner region either thermal conduction operates efficiently or the co-existing relativistic plasma seen as the radio mini-halo is mediating the shock. If common, isothermal shocks in cluster cores mean that we cannot diagnose the expansion speed of radio bubbles from temperature measurements alone. They can at times expand more rapidly than currently assumed without producing significant regions of hot gas. Bubbles may also be significantly more energetic. The pressure ripples found in earlier images are identified as isothermal sound waves. A simple estimate based on their amplitude confirms that they can be an effective distributed heat source able to balance radiative cooling. We see multiphase gas with about $10^9 M_\odot$ at a temperature of about 0.5 keV. Much, but not all, of this X-ray emitting cooler gas is spatially associated with the optical filamentary nebula around the central galaxy, NGC 1275. A residual cooling flow of about $50 M_\odot$ yr$^{-1}$ may be taking place. A channel is found in the pressure map along the path of the bubbles, with indications found of outer bubbles. The channel connects in the south (S) with a curious cold front.

Key words: galaxies: clusters: individual: Perseus – intergalactic medium – X-rays: galaxies.

1 INTRODUCTION

The Perseus cluster, A 426, is the X-ray brightest cluster in the sky and has therefore been well studied by all X-ray telescopes. The X-ray emission is due to thermal bremsstrahlung and line radiation from the hot intracluster medium (ICM) and is sharply peaked on the cluster core, centred on the dI galaxy NGC 1275. Jets from the nucleus of that galaxy have inflated bubbles to the immediate north (N) and south (S), displacing the ICM (Böhringer et al. 1993; Fabian et al. 2000). Ghost bubbles devoid of radio-emitting electrons, presumably from past activity, are seen to the north-west (NW) and S. The radiative cooling time of the gas in the inner few tens of kpc is 200–300 Myr, leading to a cooling flow of a few $100 M_\odot$ yr$^{-1}$ if there is no balancing heat input. Energy from the bubbles or the bubble inflation process is a likely source of heat, but the energy transport and dissipation mechanisms have been uncertain.

We have previously observed the Perseus cluster with the Chandra Observatory for 25 ks (Fabian et al. 2000; Schmidt, Fabian & Sanders 2002; Fabian et al. 2002a), 200 ks (Fabian et al. 2003a,b; Sanders et al. 2004; Sanders, Fabian & Dunn 2005), and now we present here the first results from a further 800 ks of observation. The total good exposure time is 900 ks.

In the earlier work, we discovered both cool gas and shocks surrounding the inner bubbles as well as quasi-circular ripples in the surrounding gas which we interpreted as sound waves generated by the cyclical bubbling of the central radio source. Related features have been seen in the Virgo cluster (Forman et al. 2003). The NW ghost bubble has a horseshoe-shaped optical Hα filament trailing it which we interpret as showing the streamlines in the ICM. On this basis, we concluded that the ICM is not highly turbulent and thus that viscosity is high enough to dissipate the energy carried by the
sound waves (Fabian et al. 2003a,b). Such an energy transport and dissipation mechanism is roughly isotropic and can thereby provide the required gently distributed heat source required by observation of this and other similarly X-ray peaked clusters (Ruzskyowski, Brüggen & Begelman 2004a,b; Fabian et al. 2005; Reynolds, Brenneman & Stock 2005; Brüggen, Ruzskyowski, & Hallman 2005).

Our goal in the present work is to determine the temperature and pressure of the ICM accurately so that we can study the processes taking place there in more detail. We indeed confirm that the pressure jumps at the weak shock surrounding the inner bubbles and also that the ripples represent significant ripples in pressure. The temperature does not jump at the shock, however, which may be due to the action of efficient thermal conduction. The energy from the bubbles propagates through isothermal sound waves and conduction in the inner regions. If this is a common property of such regions then some of the otherwise puzzling behaviour can be understood.

The redshift of the Perseus cluster is 0.0183, which for a Hubble constant of 71 km s$^{-1}$ Mpc$^{-1}$ corresponds to a luminosity distance of 78.4 Mpc and an angular scale of 367 pc arcsec$^{-1}$.

2 THE DATA

The *Chandra* observations used for the analysis presented in this paper are listed in Table 1. The total exposure time of just over 1 Ms is reduced after removing periods containing flares to 890 ks. To filter the data sets, we examined the lightcurve between 2.5 and 7 keV on the Advanced CCD Imaging Spectrometer (ACIS-S1) CCD. The S1 CCD is back-illuminated like the S3, and so it is best CCD to search for flares, as the Perseus cluster emission is dominant over flares on the S3 CCD. The CIAO 3.3.2 LC CLEAN tool was used to remove periods from the data set which deviated away from the median count rate of all the observations. Observations 3209 and 4289 did not use the S1 CCD and did not show any flares on the S3 CCD, and so were left unfiltered.

The level 1 event files were reprocessed using the Penn State University (PSU) CTI (Charge Transfer Inefficiency) corrector (Townesley et al. 2002a,b). The level 2 event files were produced by removing standard grades and bad time intervals. Each of the event files was then reprojected to match the coordinates of the 04952 observation. Images of the data in this paper were produced by summing all the images from the individual data sets. To correct for exposure variation, we created exposure maps for each of the CCDs for each of the data sets and for each of the bands. The summed images (e.g. Fig. 1) were then divided by the summed exposure maps.

We have produced unsharp mask images by subtracting images which have been smoothed on two length-scales. Fig. 2 (top) shows the result after using Gaussian smoothing of 2 and 20 pixels. The ripples are very clear, out to radii of 3–4 arcmin (60–80 kpc) from the nucleus. An arc-like step in surface brightness occurs ~1.5-arcmin S of the nucleus. A cold front is seen to the south-east (SE) (we verify that the pressure is approximately continuous across the sharp surface brightness change in Section 4). Such features were first seen in *Chandra* images of clusters by Markevitch et al. (2000). There is a major difference with the feature seen here, however, since it is concave and cannot be due to the core moving through a wider hotter gas. It does, however, appear to connect the `bay' to the S of the nucleus which connects in towards the nucleus along a narrow channel emerging to the S-SW (south-west) from the inner regions. This corresponds spatially to a weak outer Hα filament (Sanders et al. 2005) although extends much further than any optical emission. X-ray emission is also associated with a much more dominant long radial Hα filament seen to the N of the nucleus (see e.g. Concelice, Gallagher & Wyse 2001). The X-ray feature appears to break beyond the ripples and is labelled as the Hα fountain.

Table 1. The *Chandra* observations included in this. The exposure given is the time remaining after filtering the lightcurve for flares. The observations were taken with the aim point on the ACIS-S3 CCD. Positions are in J2000 coordinates.

<table>
<thead>
<tr>
<th>Obs. ID</th>
<th>Sequence</th>
<th>Observation date</th>
<th>Exposure (ks)</th>
<th>Nominal roll (°)</th>
<th>Pointing RA</th>
<th>Pointing Dec.</th>
</tr>
</thead>
<tbody>
<tr>
<td>3209</td>
<td>800209</td>
<td>2002-08-08</td>
<td>95.8</td>
<td>101.2</td>
<td>3h19m46.86</td>
<td>+41°31′51.3″</td>
</tr>
<tr>
<td>4289</td>
<td>800209</td>
<td>2002-08-10</td>
<td>95.4</td>
<td>101.2</td>
<td>3h19m46.86</td>
<td>+41°31′51.3″</td>
</tr>
<tr>
<td>6139</td>
<td>800397</td>
<td>2004-10-04</td>
<td>51.6</td>
<td>125.9</td>
<td>3h19m45.54</td>
<td>+41°31′33.9″</td>
</tr>
<tr>
<td>4946</td>
<td>800397</td>
<td>2004-10-06</td>
<td>22.7</td>
<td>127.2</td>
<td>3h19m45.44</td>
<td>+41°31′33.2″</td>
</tr>
<tr>
<td>4948</td>
<td>800398</td>
<td>2004-10-09</td>
<td>107.5</td>
<td>128.9</td>
<td>3h19m44.75</td>
<td>+41°31′40.1″</td>
</tr>
<tr>
<td>4947</td>
<td>800397</td>
<td>2004-10-11</td>
<td>28.7</td>
<td>130.6</td>
<td>3h19m45.17</td>
<td>+41°31′31.3″</td>
</tr>
<tr>
<td>4949</td>
<td>800398</td>
<td>2004-10-12</td>
<td>28.8</td>
<td>130.9</td>
<td>3h19m44.57</td>
<td>+41°31′38.7″</td>
</tr>
<tr>
<td>4950</td>
<td>800399</td>
<td>2004-10-12</td>
<td>73.4</td>
<td>131.1</td>
<td>3h19m43.97</td>
<td>+41°31′46.1″</td>
</tr>
<tr>
<td>4952</td>
<td>800400</td>
<td>2004-10-14</td>
<td>143.2</td>
<td>132.6</td>
<td>3h19m43.22</td>
<td>+41°31′52.2″</td>
</tr>
<tr>
<td>4951</td>
<td>800399</td>
<td>2004-10-17</td>
<td>91.4</td>
<td>135.2</td>
<td>3h19m43.57</td>
<td>+41°31′42.6″</td>
</tr>
<tr>
<td>4953</td>
<td>800400</td>
<td>2004-10-18</td>
<td>29.3</td>
<td>136.2</td>
<td>3h19m42.83</td>
<td>+41°31′48.5″</td>
</tr>
<tr>
<td>6145</td>
<td>800397</td>
<td>2004-10-19</td>
<td>83.1</td>
<td>137.7</td>
<td>3h19m44.66</td>
<td>+41°31′26.7″</td>
</tr>
<tr>
<td>6146</td>
<td>800398</td>
<td>2004-10-20</td>
<td>39.2</td>
<td>138.7</td>
<td>3h19m43.92</td>
<td>+41°31′32.7″</td>
</tr>
</tbody>
</table>

As will be discussed later, we suspect that the radial features are due to cold and cooler gas dragged out from the centre by rising buoyant bubbles. They represent the main axis along which most of the bubbles rise. The S cold front could then be the edge of a giant hotter bubble either produced by a past major outburst of the nucleus (cf. McNamara et al. 2005 for Hydra A) or where the hot gas accumulates due to the interior entropy of the bubbles matching the external value there.

3 TEMPERATURE AND PRESSURE MAPS

The total of ~70 million counts in the final all band image from the ACIS-S3 chip means that we can measure spectral properties on unprecedented small scales. In order to proceed, we have divided the image into bins with approximately the same number of counts and used XSPEC 11.3.2 (Arnaud 1996) fitting with MEFAL models (Mewe, Gronenschild & van den Oord 1985; Liedahl, Osterheld & Goldstein 1995) to obtain spectral parameters, fitting between 0.5 and 7 keV. The temperature map shown in Fig. 4 was derived in this way using a contour-binning approach (Sanders, in preparation) with 625 or greater counts per spectrum. In each fit, the metallicity (in Solar ratios; Anders & Grevesse 1989) and absorption column density were fixed at values measured when fitting optical Hα filaments which are surrounded by gas at about 1 keV.

Figure 2. Unsharp mask image made from the whole 0.3–7 keV band by subtracting an image smoothed with a Gaussian of dispersion 10 arcsec from one smoothed by 1 arcsec and dividing by the sum of the two images. Various features are labelled in the lower contrast image at the left-hand side.

We now focus on measurements of entropy, S, and particularly the pressure, P, of the gas. A simple method for obtaining these quantities is to assume that the density n is proportional to the square root of the X-ray surface brightness, and then use $P = nkT$ and $S = Tn^{-2/3}$. Here, we use a slightly better approach based on the emission measure, A, obtained from spectral fits. This is proportional to $n^2 V$, where V is the volume along the line of sight. Since the emission is strongly peaked, we ignore V at this stage and produced ‘projected’ entropy and pressure maps (Fig. 5).

We used standard blank sky observations to act as backgrounds for the spectral fitting. The background observations were split into sections to match the ratio of exposure time between each foreground observation. These data sets were then reprojected to match the foreground observations, and then reprojected to the 4952 observation. The exposure time of the backgrounds was altered to ensure the same rate of counts between 9 and 12 keV as their respective foregrounds, in order to correct for the variation of background with time. To create a total spectrum, the spectra from each of the individual observations were added together, excluding observations which did not have any counts in the region examined. The background spectra were added together similarly. The standard PSU CTI corrector response was used. Ancillary responses for each data set and region were produced using the CIAO MKWFT tool, weighting CCD regions using the number of counts between 0.5 and 7 keV. These ancillary responses were averaged for each region, weighting according to the number of counts between 0.5 and 7 keV for a particular data set.

The temperature map (Fig. 4) shows in great detail the ‘swirl’ around NGC 1275 (Churazov et al. 2000). Whether the swirl is really a single connected structure or an outer ring partially opened on the east (E) and connected to the rim of the inner N bubble (Dunn, Fabian & Sanders 2006) remains unclear. Some ‘fountaining’ can be seen to the N of this N bubble. This is associated with the N optical Hα filaments which are surrounded by gas at about 1 keV (see Fig. 3). A disruption in the outer ring is seen to the SE of the nucleus coincident with the optical ‘blue loop’; this is discussed in Section 6.

We now focus on measurements of entropy, S, and particularly the pressure, P, of the gas. A simple method for obtaining these quantities is to assume that the density n is proportional to the square root of the X-ray surface brightness, and then use $P = nkT$ and $S = Tn^{-2/3}$. Here, we use a slightly better approach based on the emission measure, A, obtained from spectral fits. This is proportional to $n^2 V$, where V is the volume along the line of sight. Since the emission is strongly peaked, we ignore V at this stage and produced ‘projected’ entropy and pressure maps (Fig. 5).

The entropy map (Fig. 5, left-hand side) emphasizes where gas may have cooled and resembles the temperature map. The pressure map (Fig. 5, right-hand side) on the other hand shows clearly a thick band around the inner radio bubbles and little sign of azimuthal asymmetry. As found by Sanders et al. (2004), the pressure distribution is reasonably circularly symmetric, as expected for gas close to hydrostatic equilibrium. This is not just a consequence of

our volume assumption since we see that the ‘swirl’ in temperature has completely disappeared, as has the arc noted in Fig. 2.

A thick, higher pressure band surrounds the radio-filled cavities or bubbles (Fig. 6). This presumably is shocked gas produced by the inflation of the bubbles. It is remarkable that we see it as two mostly complete rings in the projected pressure map. This means that the two bubbles cannot lie in the plane of the sky, but must be arranged so that one is nearer us than the other. Since the nearer radio jet is the S one based on very long baseline interferometry (VLBI) radio data, we suppose that the nearer bubble is the S one.

There is some azimuthal asymmetry in the pressure map, mostly associated with the bubbles. In order to see this, we have subtracted the mean pressure at each radius to produce the pressure difference map (Figs 6 and 7). There are clearly some lower pressure regions to the N and S, probably associated with older, outer bubbles. The region to the S–SW has a higher metallicity likely due to older bubbles dragging metal-rich gas there (Sanders et al. 2005).

To the S, we see two further tangential arc-like pressure minima beyond the outer S bubble. These coincide with the high-abundance shell reported by Sanders et al. (2005). To the N, we also see a large arc-like pressure minimum.

We suspect that these arc-like pressure minima are old bubbles. The large size of these bubbles could indicate that the activity was much stronger in the past, so blowing larger bubbles, or may just be due to bubbles merging. Surrounding gas may leak into the bubbles so making them less buoyant, or magnetic fields and structures may be important.

No pressure jump is associated with the concave structure to the S, confirming that it is a part of a cold front.

4 THE SHOCK AND RIPPLES

We now discuss the detailed behaviour of the temperature, density and pressure around the shock surrounding the inner bubbles and the ripples. Sectors have been defined to the north-east (NE), E, S and NW of the nucleus and spectra extracted from bins spaced 5.4 arcsec in radius (Table 2).

The projected temperature profiles are shown in the top panels in Fig. 8. We see generally that, apart from where the inner and ghost bubbles lie, the temperature profiles are smoothly increasing from the inside out. We have explored deprojected temperatures using the XSPEC PROJCT routine, but find them unstable with the temperatures depending on which bins are used. Dropping bins from either the outside or the inside can have large unpredictable effects on the results found for bins at intermediate radii. This may be due to the real geometry being obviously different from the spherical or ellipsoidal geometry assumed by the routine or to the gas being multiphase. We therefore proceed to combine the projected temperatures with approximately deprojected densities from the emission measures to obtain pressure profiles. The deprojected densities are calculated by subtracting the contribution to the fitted normalization at each radius by that expected from outer shells, assuming projection in a spherical geometry.

The density and thus pressure profiles show variations (Fig. 8) corresponding to the ripples seen in the unsharp mask image (Fig. 2). The pressure residuals from a smooth power law fitted from 20 to 70 kpc are shown in the lowest panel of the plots, together with the residuals predicted from the unsharp mask image. Ripples in pressure ranging from ±5 to ±10 per cent in pressure are seen out...
Very deep Chandra observation of the Perseus cluster

Figure 5. Entropy (left-hand side) and pressure (right-hand side) maps. The entropy map was calculated using $kT A^{-1/3}$, in units of keV cm$^{5/3}$ arcsec$^{2/3}$, where A is the MEKAL normalization per square arcsec. The pressure map was calculated using $kT A^{1/2}$, in units of keV cm$^{-5/2}$ arcsec$^{-1}$. These maps were generated by fitting regions containing approximately 625 counts or greater.

Figure 6. 1.4-GHz Radio map in blue superimposed on the pressure difference map in red, where the average pressure at each radius has been subtracted. In this map, the temperatures and normalizations were measured using regions containing approximately 10^4 counts or greater.

Figure 7. Thermal pressure map where the mean pressure at each radius has been subtracted. In this map, the temperatures and normalizations were measured using regions containing approximately 10^4 counts or greater. Note that the ‘channel’ caused by a sequence of four thermal pressure dips running to the S of the nucleus. The outer ones are assumed to be old ghost bubbles and the missing pressure is assumed to be due to relativistic plasma. A twisted channel is also seen to the N.
to 50 kpc or more. Such pressure variations cannot be static. They resemble sound waves so, following our earlier work (Fabian et al. 2003a), we interpret them as sound waves\(^1\) produced by the cyclic bubbling behaviour, or at least major expansion episodes, of the inner bubbles. In the inner region, they are high-pressure regions fronted by a weak shock, further out the shocks weaken and are not distinguished from the overall pressure disturbance or ripple.

A simple calculation serves to show the potential for the ripples to heat the gas provided that viscosity is high enough to dissipate their energy. Let us consider the region within 50 kpc where the ripples are most clearly seen. If the ripples move at \(1000 \text{ km s}^{-1}\), then they cross this region in \(5 \times 10^7 \text{ yr}\). They cause the pressure to oscillate with an amplitude of \(5-10\) per cent, which we conservatively take as \(5\) per cent of the thermal energy there. Consequently, they can balance cooling provided that the cooling time (roughly for the gas to lose all its thermal energy) is 20 times the crossing time or a Gyr. This condition is well met since the cooling time of the gas at 50 kpc is 2–3 Gyr dropping to about \(2 \times 10^4 \text{ yr}\) near the centre (for the hotter gas). The waves therefore need to dissipate about half their energy by 50 kpc.

The vertical dashed line in the upper panel of Fig. 8 corresponds to the abrupt edge to the thick pressure band around the N bubble. It is most clearly seen in this direction because there is little lower energy emission superimposed upon it as appears to happen at other azimuths. Our results show it to be associated with a jump in density and this pressure and should be a shock front. However, the projected temperature hardly changes, even dropping slightly post-shock (Fig. 8), whereas it should rise on the basis of the factor 1.39 projected temperature hardly changes, even dropping slightly post-shock (Fig. 8), whereas it should rise on the basis of the factor 1.39. The post-shock temperature \(T\) at 4.04 keV is that the post-shock temperature \(T = 2.5 + 1.56\gamma\) keV. The observed behaviour of the gas is therefore explained if the 4-keV component is isothermal with \(\gamma \approx 1\).

A simple explanation for this would be that the thermal conduction is operating on this volume-filling gas phase. The electrons, moving faster than the ions, can go ahead of the shock (see e.g. Zel’dovich & Raizer 1966; Borkowski, Shull & McKee 1989). If the magnetic field in this region is mostly radial, then conduction can eliminate temperature differences on a time-scale

\[
\tau_{\text{cond}} \approx n k T / \kappa = 2.3 \times 10^{6} n \ell_{\text{r}} T^{-5/2} \text{yr}
\]

which compares with the time-scale for distance \(\ell\) of matter to accumulate behind the shock (in the rest frame of that matter)

\[
\tau_{\text{shock}} = 4.8 \times 10^{6} \ell \text{ yr},
\]

where \(\ell\) is the length inside the shock in units of 3 kpc (the bins in Figs 8 and 9 are 2-kpc apart). The full Spitzer (1956) rate for conduction is assumed here and the total post-shock density is in units of the observed value of \(1 \text{ cm}^{-3}\) (Fig. 8); the post-shock temperature (assuming an adiabatic gas) is in units of the expected one of \(T = 5.1 \text{ keV} = 6.3 \times 10^{7} \text{ K}\). Magnetically isolated blobs such as may comprise the lower temperature component are compressed adiabatically. The post-shock time-scale for electron–ion equilibration is comparable to the above time (\(\sim 2 \times 10^{6} \text{ yr}\)). This enhances the effect of conduction (halving it) since only the electron energy needs to be conducted ahead of the shock. We envisage that the ion temperature jumps at the shock front but that the electron temperature varies smoothly through this region, with a hotter precursor extending into the unshocked gas (see fig. 7.19 on p. 519 of Zel’dovich & Raizer 1966); both the electron and ion densities jump at the shock front.

This result introduces the possibility that thermal conduction is effective in parts of the innermost regions of clusters. It has been proposed and tested as a means for heating the gas from the outside, but found to be inadequate for clusters and regions below 5 keV (Kim & Narayan 2003; Voigt & Fabian 2004). What is needed in the Perseus cluster is for thermal conduction to operate throughout much of the inner hotter volume-filling phase. The ripples would therefore be isothermal sound waves (see Fabian et al 2005, for a comment on this possibility). Both sound waves and conduction are then effective in distributing the \(P dV\) work done by the bubbles into the surrounding gas. Repeated bubbling in the central region may have ordered the magnetic field into a roughly radial structure.

Cooler and/or cooling temperature components embedded in the hotter gas behind the shock can damp any temperature rise behind the shock if they mix with the hotter gas. The mass fraction of cooler gas required (approx 30 per cent) appears not to be high enough (see Fig. 10) for this process to be important. It remains possible

\(^1\) Or at least they operate as sound waves in a mixed thermal/relativistic plasma.

Table 2

<table>
<thead>
<tr>
<th>Name</th>
<th>Centre RA</th>
<th>Centre Dec</th>
<th>Start angle</th>
<th>Stop angle</th>
</tr>
</thead>
<tbody>
<tr>
<td>North-east</td>
<td>03h19m48s11</td>
<td>+41°30'41"22</td>
<td>22.5</td>
<td>52.9</td>
</tr>
<tr>
<td>East</td>
<td>03h19m48s11</td>
<td>+41°30'41"22</td>
<td>91</td>
<td>106</td>
</tr>
<tr>
<td>South</td>
<td>03h19m45s92</td>
<td>+41°30'19"58</td>
<td>136.9</td>
<td>164.2</td>
</tr>
<tr>
<td>North-west</td>
<td>03h19m48s11</td>
<td>+41°30'41"22</td>
<td>294.4</td>
<td>334.2</td>
</tr>
</tbody>
</table>
that mixing takes place with larger masses of unseen cold gas which radiates much of the thermal energy in yet unseen bands.

An issue which could be very important for shock propagation in the inner ICM is the presence of a relativistic plasma (cosmic rays and magnetic field) in the inner core of the Perseus cluster. This is evident here from the synchrotron emission seen as the radio ‘mini-halo’ (Pedlar et al. 1990; Gitti, Brunetti & Setti 2002) and the inverse Compton emission seen as a hard X-ray flux component (Sanders et al 2005; it appears as the 16-keV component in Fig. 10). In the collisionless conditions relevant to the shock, it may be possible that the relativistic plasma soaks up the energy, leaving the gas isothermal. Indeed, it could be repeated shocks from the bubbles which re-accelerates the relativistic particles. They could redistribute the energy to larger radii, serving to transport some of...
the energy and creating a distributed heat source for the gas. We note that the electron temperature observed behind the strong shocks in young supernova remnants do not always fit expectations for simple hydrodynamical shocks, probably due to particle acceleration (Rakowski 2005, and references therein). Although promising as a mechanism, there are many uncertainties as to how it could operate and why there is no sharp rise in either the synchrotron emission seen in radio maps or in the inverse Compton emission at the position of the shock. Moreover, it does not explain how the electrons avoid compressional heating.

The isothermal nature of the inner gas raises the possibility that the bubbles expand much faster than previously suspected from observations. Initial models for the action of a central radio source on the ICM by Heinz, Reynolds & Begelman (1998) predicted that the bubbles would be surrounded by shocks, but Chandra showed no evidence for shock-heated gas. Efficient thermal conduction will, however, eliminate shock heating as a diagnostic. Consequently, the bubbles may expand, at times, faster than inferred, even supersonically. The likely behaviour given the variability of radio sources is that they expand in fits and starts, with each rapid expansion phase giving rise to a sound wave. The observation from the Perseus cluster of only one set of ghost bubbles within 50-kpc radius, yet three or more ripples allow for each bubbles to generate several ripples before becoming buoyant enough to separate and rise. This means that any estimate of bubbling power based simply on buoyancy times (e.g. Birzan et al. 2004; Dunn & Fabian 2004; Dunn, Fabian & Taylor 2005) is a lower limit.

A further issue with regard to the energy injected by the bubbles is the thickness of the post-shock gas. This is very similar to the radius of the bubbles, so has a volume about seven times that of the bubbles themselves. The pressure in the shocked gas is 30 per cent above the outer unshocked gas, P (Fig. 8), so the energy content of the post-shock gas is more than twice that obtained by assuming it is just PV, where V is the volume of a bubble. The work done ($\int P \, dV$) will yet be higher if some have been transported away by conduction or relativistic particles.

5 THE MULTI PHASE NATURE OF THE GAS

Figs 1 and 3 clearly show filamentary soft X-ray emission which is closely associated with the optical Hα filaments (Fabian et al. 2003b). This soft emission has a temperature of between 0.5 and 1 keV and would appear much brighter if the Galactic column density to the Perseus cluster was not as high as the observed value of $\sim 1.3 \times 10^{21}$ cm$^{-2}$. The Doppler velocities determined for the filaments are 100–200 km s$^{-1}$ and coherent over many kpc (Hatch et al.
so, given their large radial extent and likely origin as being pulled out from the centre by rising bubbles (Fabian et al. 2003b), the lifetimes of the filaments are several tens of million years, or even longer. In order to survive in the surrounding hot gas, they must be insulated from it or thermal evaporation would have caused them to disappear within a million yr (equation 1). Conduction must therefore be highly suppressed, by at least a factor of 100, probably due to magnetic fields along their length (conduction is suppressed perpendicular to the field direction).

As already mentioned, the filaments stop at the shock which is probably disrupting them there. The filaments coincident with the shock to the SE are probably just projected in front of the shock and are not within it. Such magnetically isolated regions need not completely vanish once they are disrupted and may survive as higher temperature blobs maintaining their isolation. The gas can therefore be multiphase, not due to a thermal cooling instability, but to the forced mixing of different components. Whether there is then slow conductive evaporation or radiative condensation (see e.g. Böhringer & Fabian 1989) or turbulent mixing (e.g. Begelman & Fabian 1990; Loewenstein & Fabian 1990) remains to be seen.

We have therefore conducted a multitemperature determination of the gas distribution in the Perseus core. The individual spectra generated from regions chosen to contain 10^4 counts or greater have been fitted with a multitemperature model consisting of gas at 0.5, 1, 2, 4, 8 and 16 keV (see also Sanders et al 2004, for similar fits to the 200-ks data). The results have been mapped in terms of mass, determined from the emission measure n^2 V divided by the density n, relevant for the pressure at that radius and measure temperature of the component. Of course, the volume-filling factor of the gas significantly different from the mean temperature found from the single temperature fits (Fig. 4) is small. The widely differing mass distributions on the sky show that the gas is genuinely multiphase (i.e. having different temperatures at the same radius), and we are not mapping a mere projection effect.

We see a striking similarity in the 0.5-keV map to the optical filaments with a total mass in the hot gas much larger than typically found from an estimate of 3 × 10^7 M⊙ based on the total luminosity of Hα (Heckman et al. 1989), a temperature of 5000 K for the gas and the surrounding pressure found here for the outer filaments. The continuing pressure rise to the centre will reduce this estimate and addition of molecular hydrogen, seen in the infrared (e.g. Hatch et al. 2005, and references therein) will tend to increase it, so it should be a reasonable estimate. The mass maps at the various temperatures are plotted in Fig. 12, and the total mass distribution, determined from the masses within 1.5 arcmin of the nucleus, is shown in Fig. 11. The different points at each temperature show the total mass including only those which are significant to 1, 2 and 3σ. Noise will be a strong contaminant to the lowest significance point. For comparison, the mass distribution expected for a steady cooling flow of 300 M⊙ yr⁻¹ is superimposed.

Interestingly, we find that there is a large drop-off in mass at 1 keV but a recovery at around 0.5 keV. This rise is of course due to the filament region. Until 0.5 keV we know the fate of such material, in terms of whether it is being heated or cooled by radiation or mixing, we cannot say whether the bulk of the cooler gas, which lies in an E–W (west) extended clump around the nucleus, is the residual of a cooling flow or not. We note that Bregman et al. (2005) find OVI emission (characteristic of gas at 5 × 10^5 K) in a 30-arcsec Far Ultraviolet Spectroscopic Explorer aperture centred on the nucleus consistent with a mass cooling rate of about 50 M⊙ yr⁻¹. This is comparable to the rate inferred from our mass determination from gas at 0.5 keV (i.e. ~ 5 × 10⁶ K) since the radiative cooling time of gas between 0.5 and 2 keV in the inner parts of the cluster is about 10⁶ T⁻³ yr, where T is in keV. Peterson (private communication) finds a limit of only 20 M⊙ yr⁻¹ from a search for Fe XVII emission in XMM–Newton Reflection Grating Spectrometer spectra of the inner 30-arcsec radius.

The fact that we see less gas at 1 keV could be the consequence of cooling due to mixing, rather than radiation, dominating in that temperature range. Such a possibility has been discussed by Fabian et al. (2002b) and Soker, Blanton & Sarazin (2004). The energy of the hotter gas could in part go to heating the cooler gas at ~10⁶ K, where there has long been a heating and excitation problem (Johnstone, Fabian & Nulsen 1987; Heckman et al. 1989; Sabra, Shields & Filippenko 2000). Indeed, a mixing solution similar to a turbulent, radiative mixing layer seems inevitable given the much lower mass in cold gas below 10⁷ K then at 0.5 keV.

A final inter-relationship between the hotter X-ray emitting gas and the optical filaments is shown in Fig. 13. There is a partial ring structure to the SE in the temperature swirl, resembling a letter ‘C’ written backwards. It coincides with some bright optical filaments and in particularly with the ‘blue loop’, first remarked on by Sandage (1972) and seen well in many recent images (e.g. the blue-band Jacobus Kapteyn Telescope (JKT) image of Fig. 12). We presume that gas in the swirl at this location collapsed and formed the stars in the astronomically recent past.

Heinz & Churazov (2005) have proposed that the relativistic component discussed in Section 4 could exist in small blobs which could help to dissipate wound waves. We see no obvious signs of small holes in the X-ray emission larger than a few 100 pc in size. How well the relativistic and thermal components are mixed is of importance for transport processes in the region.

6 DISCUSSION

We have found that the shock seen in our 200-ks image is isothermal. The ripples seen beyond the shock are therefore likely to be...
isothermal waves. Their energy is then dissipated by viscosity. Conduction and sound waves can act together to dissipate and distribute the energy from the radio source, and ultimately the central massive accreting black hole. An isothermal shock allows energetic bubbling to occur at the centre without overheating the innermost region, a problem noted by Fujita & Suzuki (2005) and Mathews, Faltenbacher & Brighenti (2005).

In the work of Fujita & Suzuki (2005), it is assumed that all wave dissipation occurs at the shock front and does not include any later dissipation via viscosity as the (observed) waves propagate further. In one model, they include conduction at 20 per cent of the Spitzer rate and find agreement with the shape of the temperature and density profile. However, most of the energy in their model is supplied by thermal conduction from the hotter outer gas; the active galactic nucleus (AGN) only dominates over the region from 20–30 kpc where the shock occurs. As they remark, a double heating model with the AGN heating the inner regions and conduction, the outer was proposed earlier by Ruszkowski & Begelman (2002).

It is clear from the temperature profile shown in the top left-hand side panel of Fig. 8 that conduction of heat from the outer hotter gas is not important within the inner 60 kpc in the Perseus cluster since the temperature profile is so flat. Indeed, from 40–55 kpc the gradient acts exactly in the wrong direction. As discussed in Section 4, the observed ripples (which are strong sound waves or weak shocks)
have more than sufficient energy to heat the inner 50 kpc, and so it is not clear that any thermal conduction of heat from the outer gas is required. What our analysis has shown is that thermal conduction acting in the inner regions can account for the observed isothermal nature of the shock and so prevent the problem of an accumulation of hot shocked gas. The conduction merely acts to mediate the shock and redistribute the energy from the central AGN.

The magnetic configuration of the field in the core is crucial to the conductive behaviour. We require an approximately radial field across the shock, which is not understood. One possibility is that it arises as a consequence of cooling and compression of the inner gas in the past which leads to the frozen-in magnetic field being predominately radial (Soker & Sarazin 1990). Nearby we have low-temperature He emitting filaments which must be many tens of million years old and so magnetically isolated. We also find evidence for multitemperature, presumably multiphase, gas. The magnetic connectedness is crucial to how the gas behaves. It raises the possibility that the swirl seen in the temperature and entropy maps is magnetically separate from the rest of the gas. Perhaps it is a fossil from the merger of a galaxy with NGC 1275, where the incoming (less massive) galaxy ‘combed’ the field into the apparent swirl. The 2-keV gas immediately around the rim of the N inner bubble is presumably protected from evaporation by a tangential field there. Such speculation may eventually be testable when it is possible with the expanded very large array to carry out Faraday rotation studies in this region at higher frequencies and greater sensitivity than currently feasible. Preliminary indications from high-resolution studies of the nucleus with the very long baseline array indicate fairly extreme rotation measures of up to 7000 radian m2 (Taylor et al., in preparation).

We also have found a roughly N–S channel in the pressure difference map which demonstrates the passage of a sequence of radio bubbles. The outer ones are large and could be where they accumulate or just represent a past, more energetic, period of activity. We also see a part of an unusual cold front to the S. This region is seen clearly in the unsharp mask images (Fig. 2) and in one generated from data from all chips (Fig. 14). This structure appears to be connected to a region to the SW of the nucleus where the channel appears. It could represent gas associated with subcluster merging in the cluster. Most likely given the relationship with the bubble channel, the gas could be evidence of past energetic bubbles. The bubble channel is good evidence that the bubbles are not easily disrupted, presumably due to the magnetic structure (De Young 2003) or viscosity in the surrounding gas (Reynolds et al. 2005). We assume that the pressure dips in the channel because there is unseen buoyant relativistic plasma there from the radio outbursts.

An overall picture of the region is shown in the image of Fig. 14, where data from all chips have been used. The structure of the inner regions can be seen together with the outer S bay, embedded within the more extended peak of cluster X-ray emission. The upper part of the He fountain (Fig. 2) can also be more clearly seen.

7 SUMMARY

Using a very deep, 900-ks Chandra image of the core of the Perseus cluster, we have found new outer features 50–80 kpc from the nucleus and measured the detailed properties of gas near the centre. The features are in the form of a concave cold front and bay-like region of hot gas which is in approximate pressure equilibrium. This could be the result of an energetic past outburst from the nucleus, or where bubbles accumulate.

![Figure 14. Total 0.5–7 keV image from all Chandra CCD chips.](image)

The inner radio bubbles are surrounded by complete higher pressure bands of gas behind a sharp front. The gas temperature does not change across the shock front, probably indicating that thermal conduction operates efficiently there, or that co-existing relativistic plasma mediates the shock. Pressure variations coincident with ripples previously found in unsharp mask images reveal the presence of isothermal sound waves. The isothermal nature of the innermost gas means that a simple temperature estimate there does not reveal the expansion velocity of the bubbles. We suspect that they expand in rapid steps associated with outbursts of activity from the central radio source. Provided that the energy in the ripples is dissipated by viscosity, then the present heating rate in the ripples is sufficient to balance radiative cooling. Larger pressure variations are seen along a N–S channel, suggesting a sequence of bubbles, revealing the activity of the central radio source for the past 10^8 yr.

The gas in the centre is significantly multiphase with a large mass of gas ($\sim 10^9 M_\odot$) associated with the optical Hα filamentary nebula, with 10 times more mass in 0.5-keV gas than that radiating the optical emission lines. Mixing is likely occurring between the hot ICM and the cold filamentary gas, with much radiative cooling probably taking place below 10^6 K.

Cluster cores are complicated with the behaviour dependent on the bubbling of a central radio source and on microphysical transport processes. These in turn depend on the magnetic field structure, which itself may be a consequence of past cooling and bubbling.

ACKNOWLEDGMENTS

We thank the referee (Y. Fujita) for comments. CSC and ACF thank the Royal Society for support. GBT acknowledges support for this work from the National Aeronautics and Space Administration through Chandra award number GO4-5134X issued by the Chandra X-ray Observatory Center, which is operated by the Smithsonian Astrophysical Observatory on behalf of the National Aeronautics and Space Administration under contract NAS8-03060. The work of SWA is supported in part by the US Department of Energy under contract number DE-AC02-76SF00515.

REFERENCES
