Cosmological constraints from models of galaxy clustering
Geraint Harker† & Shaun Cole
Institute for Computational Cosmology, University of Durham

Abstract
Given a dark matter distribution, the halo occupation distribution (HOD) provides a complete description of galaxy clustering. The form of the HOD is a basic prediction of galaxy formation models. We self-consistently combine semi-analytic models with N-body simulations and examine the resulting predictions for galaxy clustering. Comparing these clustering results with surveys constrains cosmological parameters and constrains the physics that goes into the semi-analytic models. The constraints on, for example, the matter density and power spectrum normalization are independent of CMB data, and we are able to achieve statistical errors of around 10% on $\sigma_8\Omega_M^{-2}$ (cf. ~20% for WMAP). We also use our catalogues to test the underlying assumptions of the HOD models which we use to understand the clustering results.

N-body simulations give the full nonlinear distribution of dark matter, in particular the structure and distribution of dark matter haloes. We use a suite of simulations with 5123 particles run with a version of GADGET2 (Springel, Yoshida & White 2001, Springel 2005). The cosmologies are chosen to lie on the degeneracy between Ω_M and σ_8 from studies of cluster number counts. We aim to break this degeneracy. Grids are centred on $(\Omega_M,\sigma_8)=(0.3,0.8)$ (‘Grid 1’) or on $(\Omega_M,\sigma_8)=(0.3,0.9)$ (‘Grid 2’). We rescale simulations as in Zheng et al. (2002).

The projected correlation function $w_p(r_p)$ for Grid 1, with SDSS data in black. Three variants of our GALFORM models are shown:
• Red: Cole et al. (2000) model $(\Omega_b=0.02)$
• Green: Cole et al. (2000) model with the now accepted value for Ω_b of 0.04 (Spergel et al. 2006) and conduction in massive haloes.
• Blue: A superwinds model (Benson et al. 2003).

For comparison, we also run each grid of models without altering GALFORM parameters to match the luminosity function (‘Same pars.’ on the right).

We achieve tight constraints on cosmological parameters such as the matter density, Ω_M. Our assumptions are independent of those used in, e.g. CMB analysis, and our statistical errors on $\sigma_8\Omega_M^{-2}$ are comparable.

References

†Email: g.j.a.harker@durham.ac.uk