## Lecture 5: September 1, 2010

Announcements:

First homework has been posted
Due Friday ( $10^{\text {th }}$ )
First Observatory Opportunity Thursday Night
September 2, 8:30pm
Will meet at Fiske Planetarium on Friday 9/17

## The Celestial Sphere



- The sky above looks like a dome....a hemisphere..
- If we imagine the sky around the entire Earth, we have the celestial sphere.
- This a 2-dimensional representation of the sky
$\leftarrow$ Because it represents our view from Earth, we place the Earth in the center of this sphere.
© 2005 Pearson Education, Inc., publishing as Addison Wesley
© 2005 Pearson Education Inc., publishing as Addison-Wesley


## The Celestial Sphere

## North \& South celestial poles

the points in the sky directly above the Earth's North and South poles

## celestial equator

the extension of the Earth's equator onto the celestial sphere

## ecliptic

the annual path of the Sun through the celestial sphere, which is a projection of ecliptic plane

## The Local Sky

## zenith

the point directly above you

## horizon

all points $90^{\circ}$ from the zenith

## altitude

the angle above the horizon

## meridian

due north horizon $\Rightarrow$ zenith $\Rightarrow$ due south horizon
© 2005 Pearson Education Inc., publishing as Addison-Wesley

## To pinpoint a spot in the local sky:

## Specify altitude and azimuth along the horizon


© 2005 Pearson Education, Inc., publishing as Addison Wesley

## Coordinates on the Earth

- Latitude: position north or south of equator
- Longitude: position east or west of prime meridian (runs through Greenwich, England)

Denver
Lat.:
$39^{\circ} 43^{\prime} 35^{\prime \prime} \mathrm{N}$
Long.:
$104^{\circ} 57^{\prime} 56^{\prime \prime} \mathrm{W}$


## The Daily Motion


© 2005 Pearson Education, Inc., publishing as Addison Wesley

- As the Earth rotates, the sky appears to us to rotate in the opposite direction.
- The sky appears to rotate around the N (or S) celestial poles.
- If you are standing at the poles, nothing rises or sets.
- If you are standing at the equator, everything rises \& sets $90^{\circ}$ to the horizon.
© 2005 Pearson Education Inc., publishing as Addison-Wesley


## The Daily Motion

- The altitude of the celestial pole = [your latitude].
- All stars at an angle < [your latitude] away from:
- your celestial pole never set. (circumpolar)
- the other celestial pole are never seen by you.
- Other stars, (\& Sun, Moon, planets) rise in East and set in West at an angle $=\left[90^{\circ}-\right.$ your latitude $]$.



## The Daily Motion (IF 2.13)

## daily circles --- CCW looking north, CW looking south


© 2005 Pearson Education, Inc., publishing as Addison Wesley
© 2005 Pearson Education Inc., publishing as Addison-Wesley

## Time Exposure Photograph:

- Estimate time
- Which direction did stars move?



## Annual Motion (IF 2.14)

- As the Earth orbits the Sun, the Sun appears to move eastward with respect to the stars.
- The Sun circles the celestial sphere once every year.



### 2.3 Seasons

## Our goals for learning:

- What is the cause of the seasons on Earth?
- Why are the warmest days typically a month after the beginning of summer?

