Lecture: September 20, 2010

- What is the mass of the Earth?

Announcements:

Second homework is due today.
Next Observatory opportunity is tomorrow, Tuesday, September 21

First exam will be next Monday in class
Will cover material up through Copernicus - not Kepler.

Claudius Ptolemy (AD 100-170)

Almagest

\author{

- star catalogue
 - instruments
}
- motions \& model of planets, Sun, Moon

His model fit the data, made accurate predictions, but was horribly contrived!

How does one explain retrograde motion?

Over a period of 10 weeks, Mars appears to stop, back up, then go forward again.

Ptolemy’s Geocentric Model

- Earth is at center
- Sun orbits Earth
-Planets orbit on small
circles whose centers orbit the Earth on larger circles
- [the small circles are called epicycles]

Ptolemy’s Geocentric Model

- This explained retrograde motion
- Inferior planet epicycles were fixed to the

Earth-Sun line

- This explained why Mercury \& Venus never strayed far from the Sun!
- Orbital order: Moon, Mercury, Venus, Sun, Mars, Jupiter, Saturn

3.4 The Copernican Revolution

Our goals for learning:

- Briefly describe the roles of Copernicus, Tycho, Kepler, and Galileo.
- What are Kepler’s three laws of planetary motion?

Nicolaus Copernicus (1473-1543)

He thought Ptolemy's model was contrived Yet he believed in circular motion

De Revolutionibus
Orbium Coelestium

Copernicus’ Heliocentric Model

-Sun is at center
-Earth orbits like any other planet
-Inferior planet orbits are smaller
-Retrograde motion occurs when we "lap"
Mars \& the other superior planets

Tycho Brahe (1546-1601)

- Greatest observer of his day
- Charted accurate positions of planets
- Observed a nova in 1572
- Heliocentric but Earth didn't move no parallax

Johannes Kepler (1571-1630)

- Greatest theorist of his day
- a mystic
- there were no heavenly spheres
- forces made the planets move

Kepler’s Laws

1 Each planet's orbit around the Sun is an ellipse, with the Sun at one focus.

Eccentricity of an Ellipse

Kepler’s Laws

2 A planet moves along its orbit with a speed that changes in such a way that a line from the planet to the Sun sweeps out equal areas in equal intervals of time.

Kepler’s Laws

3 The ratio of the cube of a planet's average distance from the Sun to the square of its orbital period is the same for each planet.

$$
\begin{aligned}
\mathrm{a}^{3} / \mathrm{P}^{2} & =1 \\
\mathrm{a}^{3} & =\mathrm{P}^{2}
\end{aligned}
$$

