Lecture: September 20, 2010

• What is the mass of the Earth?

Announcements:

Second homework is due today.

Next Observatory opportunity is tomorrow, Tuesday, September 21

First exam will be next Monday in class Will cover material up through Copernicus – not Kepler.

Claudius Ptolemy (AD 100-170)

Almagest

- star catalogue
- instruments
- motions & model of planets, Sun, Moon

His model fit the data, made accurate predictions, but was horribly contrived!

How does one explain *retrograde* motion?

Over a period of 10 weeks, Mars appears to stop, back up, then go forward again.

Ptolemy's Geocentric Model

Earth is at center
Sun orbits Earth
Planets orbit on small circles whose centers orbit the Earth on larger circles – [the small circles are called epicycles]

© 2005 Pearson Education, Inc., publishing as Addison Wesley

Ptolemy's Geocentric Model

- This explained retrograde motion
- •Inferior planet epicycles were fixed to the Earth-Sun line
- This explained why Mercury & Venus never strayed far from the Sun!
- Orbital order: Moon, Mercury, Venus, Sun, Mars, Jupiter, Saturn

3.4 The Copernican Revolution

Our goals for learning:

- Briefly describe the roles of Copernicus, Tycho, Kepler, and Galileo.
- What are Kepler's three laws of planetary motion?

Nicolaus Copernicus (1473-1543)

He thought Ptolemy's model was contrived Yet he believed in circular motion

De Revolutionibus Orbium Coelestium

Copernicus' <u>Heliocentric</u> Model

•Sun is at center

- •Earth orbits like any other planet
- •Inferior planet orbits are smaller
- •Retrograde motion occurs when we "lap"
- Mars & the other superior planets

Tycho Brahe (1546-1601)

- Greatest observer of his day
- Charted accurate positions of planets
- Observed a nova in 1572
- Heliocentric but Earth didn't move – no parallax

Johannes Kepler (1571-1630)

- Greatest theorist of his day
- a mystic
- there were no heavenly spheres
- *forces* made the planets move

Copyright @ 2004 Pearson Education, publishing as Addison Wesley.

Kepler's Laws

1 Each planet's orbit around the Sun is an ellipse, with the Sun at one focus.

Eccentricity of an Ellipse

Kepler's Laws

2 A planet moves along its orbit with a speed that changes in such a way that a line from the planet to the Sun sweeps out equal areas in equal intervals of time.

Kepler's Laws

3 The ratio of the cube of a planet's average distance from the Sun to the square of its orbital period is the same for each planet.

