Lecture: September 29, 2010

• Next Observatory Wednesday October 6

4. A Universe of Matter and Energy

"The eternal mystery of the world is its comprehensibility. The fact that it is comprehensible is a miracle."

Albert Einstein (1879 – 1955) Physicist

What are Matter and Energy?

matter – is material such as rocks, water, air.
energy – is what makes matter move!
Energy is measured in many different units.
The metric unit of energy used by scientists is:

Joule

4,184 joules = 1 calorie

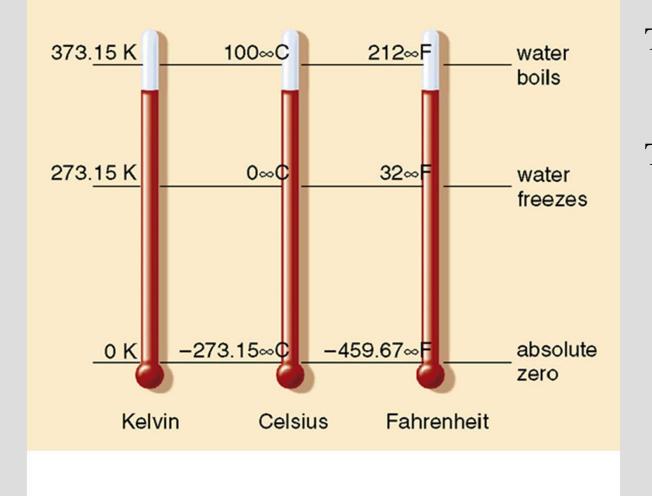
Table 4.1 Energy Comparisons

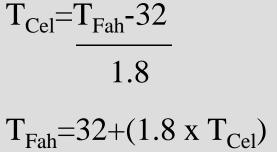
Item	Energy (joules)
Average daytime solar energy striking Earth, per m ² per second	$1.3 imes10^3$
Energy released by metabolism of one average candy bar	$1 imes 10^{6}$
Energy needed for 1 hour of walking (adult)	$1 imes 10^6$
Kinetic energy of average car traveling at 60 mi/hr	$1 imes 10^6$
Daily energy needs of average adult	$1 imes 10^7$
Energy released by burning 1 liter of oil	$1.2 imes10^6$
Energy released by fission of 1 kg of uranium-235	$5.6 imes10^{13}$
Energy released by fusion of hydrogen in 1 liter of water	$7 imes 10^{13}$
Energy released by 1-megaton H-bomb	$5 imes 10^{15}$
Energy released by major earthquake (magnitude 8.0)	$2.5 imes10^{16}$
U.S. annual energy consumption	10 ²⁰
Annual energy generation from the Sun	10 ³⁴
Energy released by supernova (explosion of a star)	$10^{44} - 10^{46}$

Copyright @ Addison Wesley

Three Basic Types of Energy

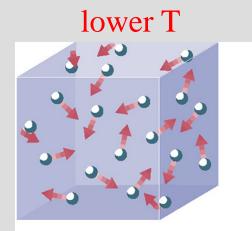
• kinetic

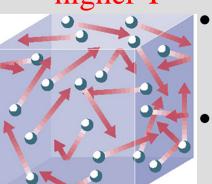

- energy of motion
- potential
 - stored energy
- radiative
 - energy transported by light


Energy can change from one form to another.

Kinetic Energy

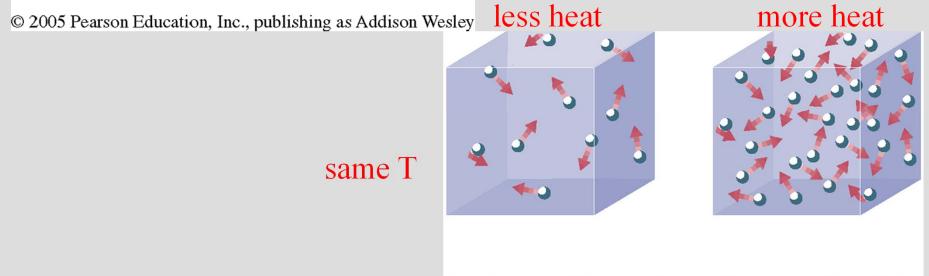
- Amount of kinetic energy of a moving object
 = 1/2 mv²
- [if mass (m) is in kg & velocity (v) is in m/s, energy is in joules]
- On the microscopic level
 - the average kinetic energy of the particles within a substance is called the **temperature**.
 - it is dominated by the velocities of the particles.


Temperature Scales

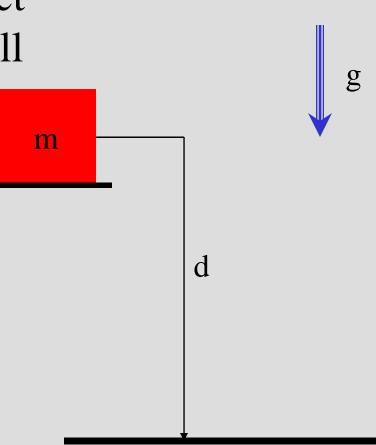


© Pearson Education, Inc., publishing as Addison Wesley

Temperature vs. Heat

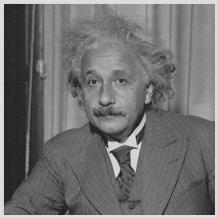


Longer arrows mean higher average speed.


- Temperature is the <u>average</u> kinetic energy.
- Heat (thermal energy) is the <u>total</u> kinetic energy.

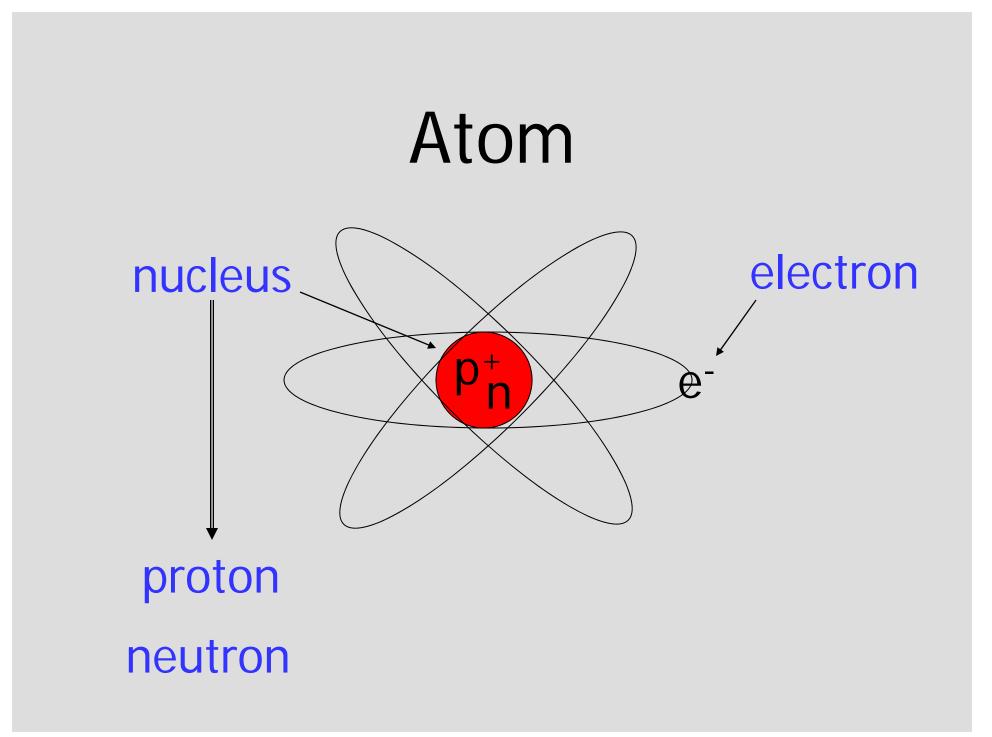
© 2005 Pearson Education, Inc., publishing as Addison Wesley

Potential Energy

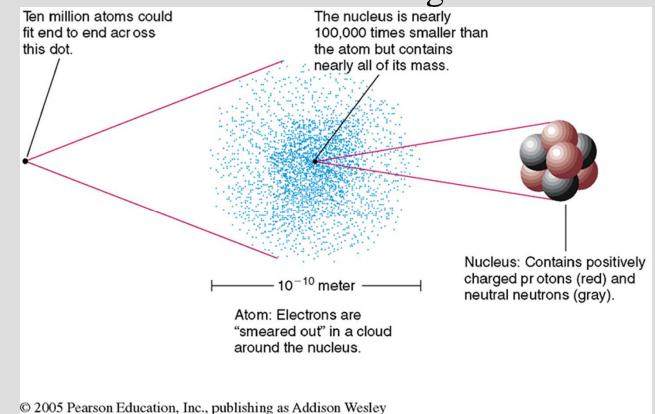

- *gravitational* potential energy is the energy which an object stores due to its ability to fall
- It depends on:
 - the object's mass (m)
 - the strength of gravity (g)
 - the distance which it falls (d)

Potential Energy

- energy is stored in matter itself
- this *mass-energy* is what would be released if an amount of mass, m, were converted into energy


 $E = mc^2$

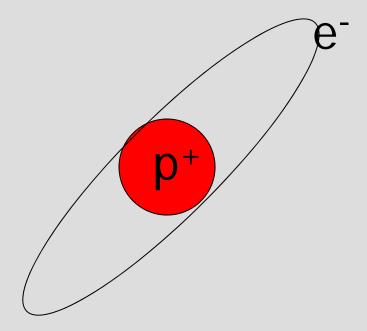
[$c = 3 \times 10^8$ m/s is the speed of light; m is in kg, then E is in joules]


Conservation of Energy

- Energy can be neither created nor destroyed.
- It merely changes it form or is exchanged between objects.
- This principle (or *law*) is fundamental to science.
- The total energy content of the Universe was determined in the Big Bang and remains the same today.

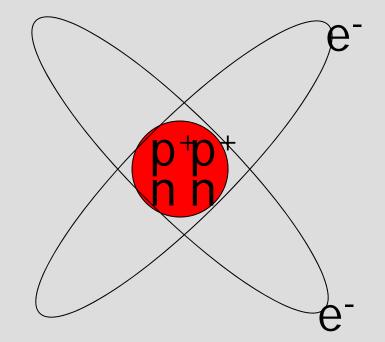
The "size" of an Atom

- Although it is the smallest part of the atom, most of the atom's mass is contained in the nucleus.
- The electrons do not "orbit" the nucleus; they are "smeared out" in a cloud which give the atom its size.

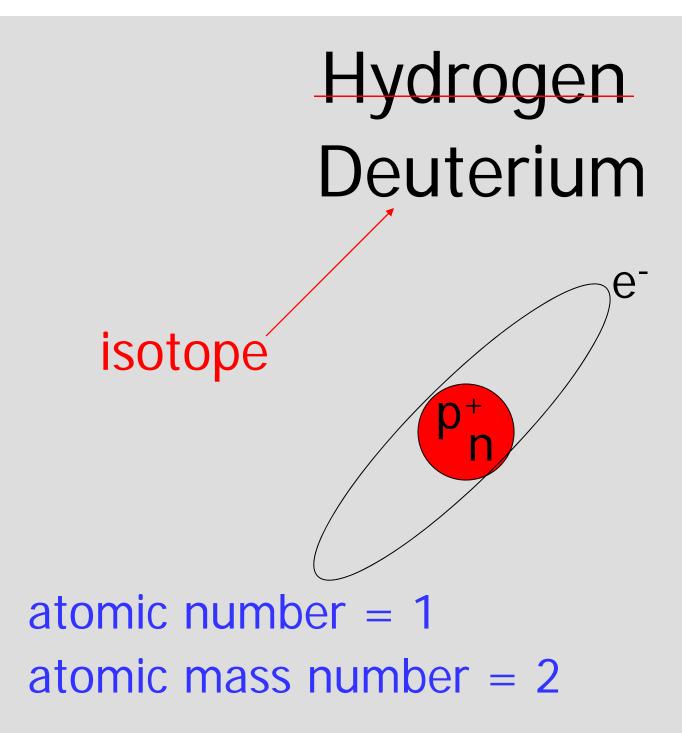


Periodic Table of the Elements

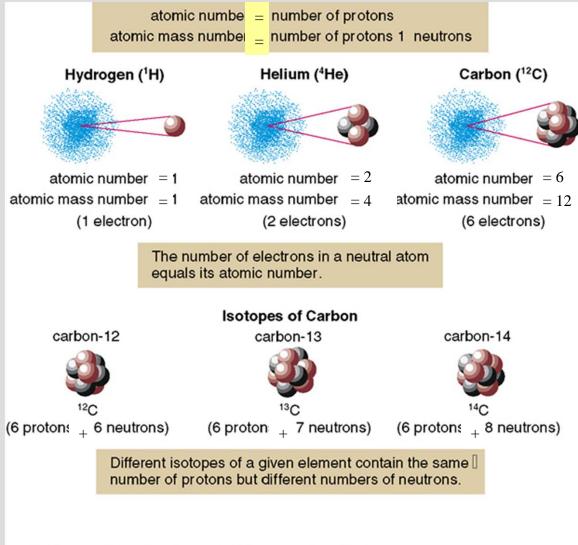
1	1																2
н																	He
3	4											5	6	7	8	9	10
Li	Be											В	С	N	0	F	Ne
11	12	1										13	14	15	16	17	18
Na	Mg											Al	Si	Р	S	CI	Ar
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
к	Ca	Sc	ті	v	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	1	Xe
55	56	57-71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	La-Lu	Hf	Та	w	Re	Os	lr	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
87	88	89-103	104	105	106	107	108	109									
Fr	Ra	Ac-Lr	Rf	Db	Sg	Bh	Hs	Mt									
		Lanthanoids		58	59	60	61	62	63	64	65	66	67	68	69	70	7
				Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
				90	91	92	93	94	95	96	97	98	99	100	101	102	10
		Actinoid	Is	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr


atomic number = #protons atomic mass no. = #protons + #neutrons

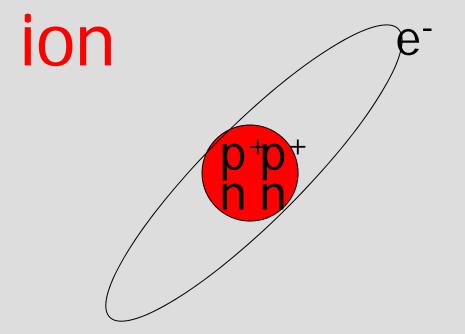
Hydrogen



atomic number = 1 atomic mass number = 1

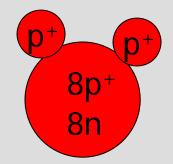

Helium

atomic number = 2 atomic mass number = 4



The particles in the nucleus determine the element & isotope.

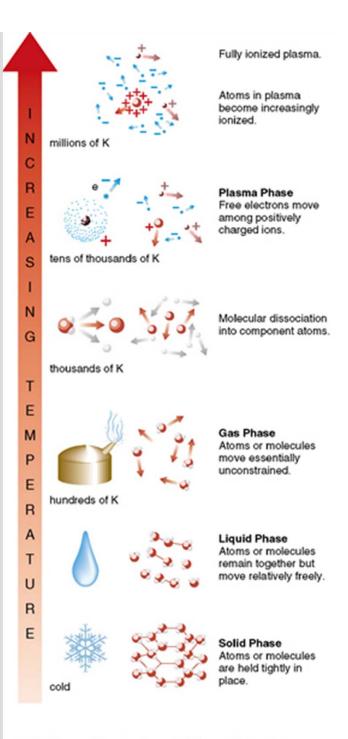
© 2005 Pearson Education, Inc., publishing as Addison Wesley


What if an electron is missing?

atomic number = 2 He^{+1} atomic mass number = 4

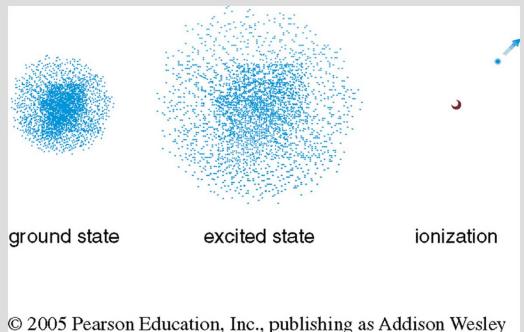
What if two or more atoms combine to form a particle?

molecule

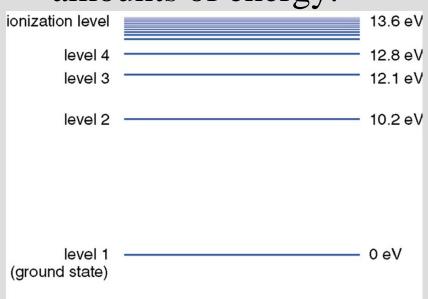

H₂O (water)

Phases of Matter

- the phases
 - solid
 - liquid
 - gas
 - plasma


depend on how tightly bound the atoms and/or molecules are

• As temperature increases, these bonds are loosened:


Electron Orbits

- Electrons can gain or lose energy while they orbit the nucleus.
- When electrons have the lowest energy possible, we say the atom is in the **ground state**.
- When electrons have more energy than this, we say the atom is in an **excited state**.
- When electrons gain enough energy to escape the nucleus, we say the atom is **ionized**.

Electron Energy Levels

- But, electrons can not have just <u>any</u> energy while orbiting the nucleus.
- Only certain energy values are allowed.
- Electrons may only gain or lose certain specific amounts of energy.

- Each element (atom and ion) has its own distinctive set or pattern of energy levels.
- This diagram depicts the energy levels of Hydrogen.

© 2005 Pearson Education, Inc., publishing as Addison Wesley

5. Universal Laws of Motion

"If I have seen farther than others, it is because I have stood on the shoulders of giants."

Sir Isaac Newton (1642 – 1727) Physicist

Objects in Motion

- **speed** rate at which an object moves, i.e. the distance traveled per unit time [m/s; mi/hr]
- velocity an object's speed in a certain direction, e.g. "10 m/s moving east"
- acceleration a change in an object's velocity,
 i.e. a change in either speed or direction is an acceleration [m/s²]