
CHAPTER 6:  SYNCHROTRON RADIATION

6.1 THE SYNCHROTRON FREQUENCY

Synchrotron radiation is, very simply, radiation from relativistic electrons moving in a
uniform magnetic field. It is the relativistic equivalent of cyclotron radiation and is named
after the relativistic accelerators used by physicists. When cyclotrons became sufficiently
powerful to boost an electron close to the speed of light, the mass of the electron changed
and so did its orbital frequency. As a result, the
synchrotron had to adjust its boost frequency as the
energy of the beam particles rose. These synchrotrons
are in regular use around the world as a copious supply
of ultraviolet and x-ray photons.

The universe creates relativistic electrons and traps
them in magnetic fields in a variety of different
environments. The objects that emit the high energy
electrons tend to be rather exotic and interesting, so
understanding the nature of synchrotron radiation is of
basic value to modern astrophysics.

Consider a relativistic particle of mass γme moving at
velocity v perpendicular to the magnetic field lines. We can then write the equation for
balance of centrifugal force against the Lorentz force in the relativisitic case. The right side
of the equation was already in relativistic form in equation 5.1. Now we have:
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proceeding in the usual way for an orbit we find that
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then solving for the orbital frequency we find
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Thus the period of the orbit of the electron will drop by a factor of γ.
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Figure 6.1: As a particle moves
in a magnetic field, it has a
circular orbit, even if relativistic.



At first one might be tempted to assume that the radiation will fall in frequency
accordingly. However, exactly the opposite is true. Consider the electron from an almost
co-moving (i.e. non-relativistic) frame. The exact frame is irrelevant, as the cyclotron
frequency is independent of the particle’s velocity in the non-relativistic frame. However,
due to time dilation effects as we shift frames, the particle will cross a factor of γ more
magnetic field lines per second than in the lab frame, effectively increasing the field by a
factor of γ. Thus in the non-relativistic frame we find the frequency of emission to be:
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Returning to lab frame, the radiation frequency is Doppler shifted by a factor of γ. If the
particle is moving away from us, then the frequency shifts back down to as low as the
original cyclotron frequency. If the particle is heading toward us, then the frequency shifts
upward another factor of γ, leading us to:
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We refer to this frequency as the “synchrotron frequency” as it is the characteristic
frequency of emission of the relativistic
electron. In actual fact, the emission is now
spread across a broad band of the
spectrum, from essentially zero frequency
up to the syhnchrotron. But, since it is the
high energy photons that carry the bulk of
the energy, we use
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as the synchrotron characteristic
frequency.

The actual distribution of the
synchrotron radiation from an electron is
shown in Figure 6.2. From detailed
derivation of the physics, we know it to be a modified Bessel function when averaged over a
full orbit. However, in astrophysical environments, we always have a range of energies (γ’s)
and this function is washed out. We simply
concentrate on the characteristic energy of
the emission.

An electron experiences an upshift in
radiation due to the relativistic
transformation, but also experiences the
famous “headlight effect”. The radiation is
primary emitted in the forward direction as

Figure 6.2: The actual spectral distribution of
synchrotron emission from a single particle is a
modified Bessel function. Because of group
effects, we rarely worry about this function in
astrophysics.



the electron moves around its orbit. The angular width of the radiation is about 1/γ radians.
Thus we expect, even in an astrophysical setting, for the radiation to be strongest in the
plane perpendicular to the magnetic field.

6.2 ENSEMBLES OF ELECTRONS

The theory for the emission from a single electron in a uniform magnetic field is elegant
and complete. However, one electron is too faint to observe at a large distance, so we
always observe regions where large numbers of electrons are emitting together. These
ensembles tend to have certain characteristics that allow us to analyze the physical
parameters of the emitting regions.

Synchrotron emitters have highly non-thermal energy distributions. This is because the
process that creates them is usually related to electro-magnetic phenomena in some way. We
usually find that the distribution of electron energy can be given by a power law
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where N(E) is the is the number of electrons between E and E+dE.
When this power law of energies is convolved with the emission spectrum of an

individual electron, we find that the output is also a power law.
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or more simply, jν, the emissivity per unit volume is given by
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Thus we usually see power law spectra emitted by synchrotron sources. From equation
6.9 we see that the intensity related to the number of electrons (from K) and the strength of
the magnetic field, however, this information may be hidden in the intensity of the signal.
The power law index α, which is defined by the distribution of electron energies is directly
reflected in the power law index of the emitted spectrum.

6.3 SYNCHROTRON DECAY TIME

EXAMPLE
Electrons with energy of 50MeV are trapped in a region of space with a 10-4Gauss magnetic
field. What is γ? What will be characteristic frequency at which the electrons will emit?

Answer: γ=50MeV/511keV=100
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Just as in cyclotron radiation, we can estimate the decay time of a synchrotron source,
and we start in the same way, with the Larmor formula, only this time we must adjust the
Larmor formula with the addition of the γ4.
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Using the force balance equation in relativistic form we have
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which simplifies to
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after substitution we find
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inserting the constants of nature
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after the algebra we find that a single electron emits power P:

P= 1.6 * 10-15 B2γ2 ergs/s (6.16)

The same electron has energy E:

E= γmc2 =0.91*10–27 * 9*1020 γ ergs (6.17)

or

E=8.2*10-7 γ ergs (6.18)

To find the characteristic time for loss of energy we divide the energy
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Thus the synchrotron decay time is given by:
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Thus the decay time scales as B2γ, while the frequency scales as Bγ2. This difference allows
one to solve for both the magnetic field and the particle energy. If the decay time is not
measurable, then an estimate of the magnetic field needs to be made. One way to do this is
to compare the total magnetic field energy to the total particle energy and choose the field
that leads to the smallest total energy. This approach is used to estimate the energy in the
lobes of radio galaxies.

EXERCISES:

1. The Crab Nebula is observed to emit x-rays having an energy of at least 100keV from an
extended region.  Compute the energy, lifetime, and Larmor radius of the electrons producing
this radiation.  Assume it is due to synchrotron radiation in a magnetic field of 10-4 gauss.

2. The nonthermal spectrum of the Crab exhibits a downward turn above 1015 Hz.  Assuming this
bend is due to lifetime losses, use the known age of the Crab (supernova in 1054 AD) to
estimate the magnetic field strength.

EXAMPLE

A radio astronomer is observing a source that is believed to be emitting by synchrotron radiation.
The source fades away over a one month timescale. Its spectrum has a characteristic value of
1GHz, as shown below. Derive the magnetic field and electron energy (γ) of the emitting particles.

Answer: Use equation 6.20. The timescale is about 2x106 seconds:
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Then use the equation 6.7 for the synchrotron frequency

269 10*410 γB=  so that  2502 =γb

Solving simultaneously we find that   B ~ 5 gauss  and  γ ~ 7



3.  A radio galaxy has created a giant lobe, 100,000pc in diameter, filled with relativistic electrons.
The lobe emits 3x1040 ergs/sec of synchrotron emission at about 1GHz.

a)  What is the energy of a typical electron (in ergs)?
b)  How much energy is stored in the relativistic electrons of the lobe?
c)  How long can the lobe survive without new electrons?
d)  How much energy is stored in magnetic field? (Use B2/8π)


